Paul M Bays

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9423896/publications.pdf

Version: 2024-02-01

68 papers

6,158 citations

147566 31 h-index 60 g-index

80 all docs 80 docs citations

80 times ranked

3898 citing authors

#	Article	IF	CITATIONS
1	Dynamic Shifts of Limited Working Memory Resources in Human Vision. Science, 2008, 321, 851-854.	6.0	929
2	Changing concepts of working memory. Nature Neuroscience, 2014, 17, 347-356.	7.1	799
3	The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 2009, 9, 7-7.	0.1	662
4	Computational principles of sensorimotor control that minimize uncertainty and variability. Journal of Physiology, 2007, 578, 387-396.	1.3	284
5	Dynamic Updating of Working Memory Resources for Visual Objects. Journal of Neuroscience, 2011, 31, 8502-8511.	1.7	229
6	Storage and binding of object features in visual working memory. Neuropsychologia, 2011, 49, 1622-1631.	0.7	195
7	Perception of the Consequences of Self-Action Is Temporally Tuned and Event Driven. Current Biology, 2005, 15, 1125-1128.	1.8	193
8	Rapid forgetting prevented by retrospective attention cues Journal of Experimental Psychology: Human Perception and Performance, 2013, 39, 1224-1231.	0.7	188
9	Noise in Neural Populations Accounts for Errors in Working Memory. Journal of Neuroscience, 2014, 34, 3632-3645.	1.7	182
10	Distinct neural mechanisms underlie the success, precision, and vividness of episodic memory. ELife, 2016, 5, .	2.8	182
11	Temporal dynamics of encoding, storage, and reallocation of visual working memory. Journal of Vision, $2011,11,6\text{-}6$.	0.1	178
12	Attenuation of Self-Generated Tactile Sensations Is Predictive, not Postdictive. PLoS Biology, 2006, 4, e28.	2.6	170
13	Neural Architecture for Feature Binding in Visual Working Memory. Journal of Neuroscience, 2017, 37, 3913-3925.	1.7	158
14	Functional Magnetic Resonance Imaging of Impaired Sensory Prediction in Schizophrenia. JAMA Psychiatry, 2014, 71, 28.	6.0	138
15	Spikes not slots: noise in neural populations limits working memory. Trends in Cognitive Sciences, 2015, 19, 431-438.	4.0	135
16	Age-related decline of precision and binding in visual working memory Psychology and Aging, 2013, 28, 729-743.	1.4	99
17	Reduced Hippocampal Functional Connectivity During Episodic Memory Retrieval in Autism. Cerebral Cortex, 2017, 27, 888-902.	1.6	90
18	No fixed item limit in visuospatial working memory. Cortex, 2016, 83, 181-193.	1.1	78

#	Article	IF	CITATIONS
19	Integration of Goal- and Stimulus-Related Visual Signals Revealed by Damage to Human Parietal Cortex. Journal of Neuroscience, 2010, 30, 5968-5978.	1.7	76
20	Spatial remapping of the visual world across saccades. NeuroReport, 2007, 18, 1207-1213.	0.6	72
21	Development of visual working memory precision in childhood. Developmental Science, 2012, 15, 528-539.	1.3	70
22	Evaluating and excluding swap errors in analogue tests of working memory. Scientific Reports, 2016, 6, 19203.	1.6	66
23	Evidence for Optimal Integration of Visual Feature Representations across Saccades. Journal of Neuroscience, 2015, 35, 10146-10153.	1.7	59
24	New perspectives on binding in visual working memory. British Journal of Psychology, 2019, 110, 207-244.	1,2	54
25	Precision of working memory for visual motion sequences and transparent motion surfaces. Journal of Vision, 2011, 11, 2-2.	0.1	51
26	Obligatory encoding of task-irrelevant features depletes working memory resources. Journal of Vision, 2013, 13, 21-21.	0.1	47
27	Working memory retrieval as a decision process. Journal of Vision, 2014, 14, 2-2.	0.1	47
28	Drift in Neural Population Activity Causes Working Memory to Deteriorate Over Time. Journal of Neuroscience, 2018, 38, 4859-4869.	1.7	47
29	A Probabilistic Palimpsest Model of Visual Short-term Memory. PLoS Computational Biology, 2015, 11, e1004003.	1.5	46
30	Stochastic sampling provides a unifying account of visual working memory limits. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20959-20968.	3.3	44
31	Active inhibition and memory promote exploration and search of natural scenes. Journal of Vision, 2012, 12, 8-8.	0.1	43
32	Efficient Coding in Visual Working Memory Accounts for Stimulus-Specific Variations in Recall. Journal of Neuroscience, 2018, 38, 7132-7142.	1.7	41
33	Interference between velocity-dependent and position-dependent force-fields indicates that tasks depending on different kinematic parameters compete for motor working memory. Experimental Brain Research, 2005, 163, 400-405.	0.7	38
34	Restoration of fMRI Decodability Does Not Imply Latent Working Memory States. Journal of Cognitive Neuroscience, 2017, 29, 1977-1994.	1.1	38
35	A neural model of retrospective attention in visual working memory. Cognitive Psychology, 2018, 100, 43-52.	0.9	34
36	Eyeâ€Search: A webâ€based therapy that improves visual search in hemianopia. Annals of Clinical and Translational Neurology, 2015, 2, 74-78.	1.7	28

#	Article	IF	CITATIONS
37	The ipsilesional attention bias in right-hemisphere stroke patients as revealed by a realistic visual search task: Neuroanatomical correlates and functional relevance Neuropsychology, 2018, 32, 850-865.	1.0	28
38	Visual Working Memory Is Independent of the Cortical Spacing Between Memoranda. Journal of Neuroscience, 2018, 38, 3116-3123.	1.7	26
39	Actions and Consequences in Bimanual Interaction Are Represented in Different Coordinate Systems. Journal of Neuroscience, 2006, 26, 7121-7126.	1.7	25
40	Response to Comment on "Dynamic Shifts of Limited Working Memory Resources in Human Vision". Science, 2009, 323, 877-877.	6.0	25
41	Functions of Memory Across Saccadic Eye Movements. Current Topics in Behavioral Neurosciences, 2018, 41, 155-183.	0.8	24
42	Competition between movement plans increases motor variability: evidence of a shared resource for movement planning. Journal of Neurophysiology, 2016, 116, 1295-1303.	0.9	23
43	Reassessing the Evidence for Capacity Limits in Neural Signals Related to Working Memory. Cerebral Cortex, 2018, 28, 1432-1438.	1.6	21
44	Flexible updating of dynamic knowledge structures. Scientific Reports, 2019, 9, 2272.	1.6	20
45	Independent working memory resources for egocentric and allocentric spatial information. PLoS Computational Biology, 2019, 15, e1006563.	1.5	20
46	The effect of frontoparietal paired associative stimulation on decision-making and working memory. Cortex, 2019, 117, 266-276.	1.1	19
47	A signature of neural coding at human perceptual limits. Journal of Vision, 2016, 16, 4.	0.1	18
48	Theory of neural coding predicts an upper bound on estimates of memory variability Psychological Review, 2020, 127, 700-718.	2.7	14
49	Swap errors in visual working memory are fully explained by cue-feature variability. Cognitive Psychology, 2022, 137, 101493.	0.9	13
50	Failure of self-consistency in the discrete resource model of visual working memory. Cognitive Psychology, 2018, 105, 1-8.	0.9	11
51	Automatic and intentional influences on saccade landing. Journal of Neurophysiology, 2017, 118, 1105-1122.	0.9	10
52	Consequence of stroke for feature recall and binding in visual working memory. Neurobiology of Learning and Memory, 2021, 179, 107387.	1.0	9
53	Location-independent feature binding in visual working memory for sequentially presented objects. Attention, Perception, and Psychophysics, 2021, 83, 2377-2393.	0.7	9
54	Internal but not external noise frees working memory resources. PLoS Computational Biology, 2018, 14, e1006488.	1.5	7

#	Article	IF	Citations
55	Limited memory for ensemble statistics in visual change detection. Cognition, 2021, 214, 104763.	1.1	6
56	Role of time in binding features in visual working memory Psychological Review, 2023, 130, 137-154.	2.7	6
57	Recall of facial expressions and simple orientations reveals competition for resources at multiple levels of the visual hierarchy. Journal of Vision, 2019, 19, 8.	0.1	5
58	Transsaccadic integration relies on a limited memory resource. Journal of Vision, 2021, 21, 24.	0.1	4
59	Fidelity of the representation of value in decision-making. PLoS Computational Biology, 2017, 13, e1005405.	1.5	4
60	Drift, not decay, in neural population activity causes working memory to deteriorate over time. Journal of Vision, 2017, 17, 1280.	0.1	1
61	Efficient coding in visual working memory accounts for stimulus-specific variations in orientation recall. Journal of Vision, 2018, 18, 692.	0.1	1
62	Theory of neural coding predicts an upper bound on estimates of memory variability. Journal of Vision, 2019, 19, 203b.	0.1	1
63	Mechanisms of feature binding in visual working memory are stable over long delays. Journal of Vision, 2021, 21, 7.	0.1	1
64	Transsaccadic integration operates independently in different feature dimensions. Journal of Vision, 2021, 21, 7.	0.1	0
65	Neural architecture for binding in visual working memory. Journal of Vision, 2016, 16, 1431.	0.1	O
66	Dissociable effects of stimulus capture, global effect and task intention in saccade targeting. Journal of Vision, 2017, 17, 903.	0.1	0
67	Optimal change detection without ensemble statistics. Journal of Vision, 2018, 18, 190.	0.1	0
68	Working memory resources can be efficiently deallocated from items that become obsolete. Journal of Vision, 2019, 19, 77c.	0.1	O