
Laura M. Calvi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/942369/publications.pdf Version: 2024-02-01

LAUDA M CALVI

#	Article	IF	CITATIONS
1	Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 2003, 425, 841-846.	27.8	3,099
2	Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. Journal of Experimental Medicine, 2005, 201, 1781-1791.	8.5	610
3	Therapeutic targeting of a stem cell niche. Nature Biotechnology, 2007, 25, 238-243.	17.5	288
4	Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood, 2012, 119, 540-550.	1.4	185
5	The hematopoietic stem cell niche in homeostasis and disease. Blood, 2015, 126, 2443-2451.	1.4	182
6	The interplay of osteogenesis and hematopoiesis. Journal of Cell Biology, 2004, 167, 1113-1122.	5.2	113
7	Notch signaling and the bone marrow hematopoietic stem cell niche. Bone, 2010, 46, 281-285.	2.9	103
8	Parathyroid hormone stimulates expression of the Notch ligand Jagged1 in osteoblastic cells. Bone, 2006, 39, 485-493.	2.9	96
9	Prostaglandin E2 Increases Hematopoietic Stem Cell Survival and Accelerates Hematopoietic Recovery After Radiation Injury. Stem Cells, 2013, 31, 372-383.	3.2	95
10	Aged marrow macrophages expand platelet-biased hematopoietic stem cells via interleukin-1B. JCI Insight, 2019, 4, .	5.0	82
11	Osteoblastic N-cadherin is not required for microenvironmental support and regulation of hematopoietic stem and progenitor cells. Blood, 2012, 120, 303-313.	1.4	81
12	Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome. Blood, 2016, 127, 616-625.	1.4	80
13	Concise Review: Current Concepts in Bone Marrow Microenvironmental Regulation of Hematopoietic Stem and Progenitor Cells. Stem Cells, 2013, 31, 1044-1050.	3.2	78
14	When Is It Appropriate to Order an Ionized Calcium?. Journal of the American Society of Nephrology: JASN, 2008, 19, 1257-1260.	6.1	75
15	In vivo prostaglandin E2 treatment alters the bone marrow microenvironment and preferentially expands short-term hematopoietic stem cells. Blood, 2009, 114, 4054-4063.	1.4	73
16	Advancing Treatment for Metastatic Bone Cancer: Consensus Recommendations from the Second Cambridge Conference. Clinical Cancer Research, 2008, 14, 6387-6395.	7.0	64
17	Communications between bone cells and hematopoietic stem cells. Archives of Biochemistry and Biophysics, 2008, 473, 193-200.	3.0	61
18	Bone marrow mesenchymal stromal cells from acute myelogenous leukemia patients demonstrate adipogenic differentiation propensity with implications for leukemia cell support. Leukemia, 2020, 34, 391-403.	7.2	61

LAURA M. CALVI

#	Article	IF	CITATIONS
19	Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells. Blood, 2012, 119, 2489-2499.	1.4	60
20	The aging hematopoietic stem cell niche: Phenotypic and functional changes and mechanisms that contribute to hematopoietic aging. Seminars in Hematology, 2017, 54, 25-32.	3.4	50
21	PTH-enhanced structural allograft healing is associated with decreased angiopoietin-2–mediated arteriogenesis, mast cell accumulation, and fibrosis. Journal of Bone and Mineral Research, 2013, 28, 586-597.	2.8	49
22	The microenvironment in myelodysplastic syndromes: Niche-mediated disease initiation and progression. Experimental Hematology, 2017, 55, 3-18.	0.4	47
23	Constitutively active PTH/PTHrP receptor in odontoblasts alters odontoblast and ameloblast function and maturation. Mechanisms of Development, 2004, 121, 397-408.	1.7	45
24	Osteoblastic Activation in the Hematopoietic Stem Cell Niche. Annals of the New York Academy of Sciences, 2006, 1068, 477-488.	3.8	45
25	Elucidating bone marrow edema and myelopoiesis in murine arthritis using contrastâ€enhanced magnetic resonance imaging. Arthritis and Rheumatism, 2008, 58, 2019-2029.	6.7	45
26	Collagenase Cleavage of Type I Collagen Is Essential for Both Basal and Parathyroid Hormone (PTH)/PTH-Related Peptide Receptor-Induced Osteoclast Activation and Has Differential Effects on Discrete Bone Compartments. Endocrinology, 2003, 144, 4106-4116.	2.8	44
27	The Notch Ligand Jagged1 Regulates the Osteoblastic Lineage by Maintaining the Osteoprogenitor Pool. Journal of Bone and Mineral Research, 2017, 32, 1320-1331.	2.8	44
28	PTH expands short-term murine hemopoietic stem cells through T cells. Blood, 2012, 120, 4352-4362.	1.4	42
29	Cellular Complexity of the Bone Marrow Hematopoietic Stem Cell Niche. Calcified Tissue International, 2014, 94, 112-124.	3.1	42
30	EVI1 overexpression reprograms hematopoiesis via upregulation of Spi1 transcription. Nature Communications, 2018, 9, 4239.	12.8	39
31	Bone Marrow-Derived Matrix Metalloproteinase-9 Is Associated with Fibrous Adhesion Formation after Murine Flexor Tendon Injury. PLoS ONE, 2012, 7, e40602.	2.5	37
32	Hematopoietic niche and bone meet. Current Opinion in Supportive and Palliative Care, 2008, 2, 211-217.	1.3	35
33	Flaming and fanning: The Spectrum of inflammatory influences in myelodysplastic syndromes. Blood Reviews, 2019, 36, 57-69.	5.7	34
34	The Chemokine CCL3 Regulates Myeloid Differentiation and Hematopoietic Stem Cell Numbers. Scientific Reports, 2018, 8, 14691.	3.3	33
35	Ovariectomy expands murine short-term hemopoietic stem cell function through T cell expressed CD40L and Wnt10B. Blood, 2013, 122, 2346-2357.	1.4	30
36	Biology of BM failure syndromes: role of microenvironment and niches. Hematology American Society of Hematology Education Program, 2014, 2014, 71-76.	2.5	29

LAURA M. CALVI

#	Article	IF	CITATIONS
37	GM-CSF drives myelopoiesis, recruitment and polarisation of tumour-associated macrophages in cholangiocarcinoma and systemic blockade facilitates antitumour immunity. Gut, 2022, 71, 1386-1398.	12.1	28
38	Addressing the Symptoms or Fixing the Problem? Developing Countermeasures against Normal Tissue Radiation Injury. Radiation Research, 2016, 186, 1-16.	1.5	26
39	Notch signaling in the malignant bone marrow microenvironment: implications for a nicheâ€based model of oncogenesis. Annals of the New York Academy of Sciences, 2015, 1335, 63-77.	3.8	24
40	Hematopoietic Stem Cell Cultures and Assays. Methods in Molecular Biology, 2014, 1130, 315-324.	0.9	21
41	Acute Thyrotoxicosis Secondary to Destructive Thyroiditis Associated with Cardiac Catheterization Contrast Dye. Thyroid, 2011, 21, 443-449.	4.5	20
42	A case–control study of ultraviolet radiation exposure, vitamin D, and lymphoma risk in adults. Cancer Causes and Control, 2010, 21, 1265-1275.	1.8	19
43	Impact of aging on bone, marrow and their interactions. Bone, 2019, 119, 1-7.	2.9	18
44	Vitamin D and Non-Hodgkin Lymphoma Risk in Adults: A Review. Cancer Investigation, 2009, 27, 942-951.	1.3	17
45	Minireview: Complexity of Hematopoietic Stem Cell Regulation in the Bone Marrow Microenvironment. Molecular Endocrinology, 2014, 28, 1592-1601.	3.7	17
46	Geographic variation in cost of care for pituitary tumor surgery. Pituitary, 2016, 19, 515-521.	2.9	15
47	The Niche as a Target for Hematopoietic Manipulation and Regeneration. Tissue Engineering - Part B: Reviews, 2011, 17, 415-422.	4.8	13
48	Late presentation of acromegaly in medically controlled prolactinoma patients. Endocrinology, Diabetes and Metabolism Case Reports, 2016, 2016, .	0.5	13
49	Two Cases of Malignant Struma Ovarii with Metastasis to Pelvic Bone. Gynecologic and Obstetric Investigation, 2013, 75, 139-144.	1.6	12
50	Osteolineage cells and regulation of the hematopoietic stem cell. Best Practice and Research in Clinical Haematology, 2013, 26, 249-252.	1.7	11
51	Reduction of leukemic burden via boneâ€targeted nanoparticle delivery of an inhibitor of Câ€chemokine (C motif) ligand 3 (CCL3) signaling. FASEB Journal, 2021, 35, e21402.	0.5	11
52	Morning Serum Cortisol Level After Transsphenoidal Surgery for Pituitary Adenoma Predicts Hypothalamic-Pituitary-Adrenal Function Despite Intraoperative Dexamethasone Use. Endocrine Practice, 2015, 21, 897-902.	2.1	10
53	Acute and late effects of combined internal and external radiation exposures on the hematopoietic system. International Journal of Radiation Biology, 2019, 95, 1447-1461.	1.8	8
54	CCR5 maintains macrophages in the bone marrow and drives hematopoietic failure in a mouse model of severe aplastic anemia. Leukemia, 2021, 35, 3139-3151.	7.2	8

Laura M. Calvi

#	Article	IF	CITATIONS
55	What is the role of the microenvironment in MDS?. Best Practice and Research in Clinical Haematology, 2019, 32, 101113.	1.7	7
56	Immune Dysfunction, Cytokine Disruption, and Stromal Changes in Myelodysplastic Syndrome: A Review. Cells, 2022, 11, 580.	4.1	7
57	Key Endothelial Signals Required for Hematopoietic Recovery. Cell Stem Cell, 2009, 4, 187-188.	11.1	6
58	Regulatory interactions in the bone marrow microenvironment. IBMS BoneKEy, 2011, 8, 96-111.	0.0	6
59	Pituitary Adenoma with Mucin Cells in a Man with an Unusual Presentation of Carney Complex. Endocrine Pathology, 2013, 24, 106-109.	9.0	3
60	Impact of dietary supplements, obesity and treatment initiation on serum vitamin D levels in patients with lymphoma. Leukemia and Lymphoma, 2015, 56, 508-511.	1.3	3
61	Prostaglandin E2 (PGE2) Regulates Osteoblastic Jagged1 and Expands Primitive Hematopoietic Cells In Vivo Blood, 2006, 108, 89-89.	1.4	3
62	Targeted Radiation Evokes Catecholamine Production Triggering Systemic Inflammatory Responses. Blood, 2021, 138, 989-989.	1.4	3
63	Osteoblasts as leukemia-initiating cells. BoneKEy Reports, 2014, 3, 572.	2.7	2
64	Bone marrow and the hematopoietic stem cell niche. , 2020, , 73-87.		2
65	Local Irradiation Induces Systemic Inflammatory Response and Alteration of the Hematopoietic Stem Cell Niche. Blood, 2019, 134, 1213-1213.	1.4	2
66	Interleukin-1/Toll-like Receptor Inhibition Can Restore the Disrupted Bone Marrow Microenvironment in Mouse Model of Myelodysplastic Syndromes. Blood, 2021, 138, 1510-1510.	1.4	2
67	Agrin complicates the niche. Blood, 2011, 118, 2641-2642.	1.4	1
68	Residual Disease in a Novel Xenograft Model of RUNX1-Mutated, Cytogenetically Normal Acute Myeloid Leukemia. PLoS ONE, 2015, 10, e0132375.	2.5	1
69	FGF-23: a novel actor in stem cell mobilization. Blood, 2021, 137, 1434-1436.	1.4	1
70	Osteoblastic VEGF Coordinates Remodeling of the Hematopoietic Stem Cell Niche. Blood, 2014, 124, 772-772.	1.4	1
71	A Role for IL1RAP in Acute Myelogenous Leukemia Stem Cells Following Treatment and Progression. Blood, 2015, 126, 4266-4266.	1.4	1
72	Distinct Properties of Leukemia Stem Cells in Primary Refractory Acute Myeloid Leukemia. Blood, 2015, 126, 685-685.	1.4	1

Laura M. Calvi

#	Article	IF	CITATIONS
73	Prostaglandin E2 Promotes the Sequential Recovery of Bone Marrow Vasculature and the Megakaryocyte Lineage Following Radiation Injury. Blood, 2015, 126, 3597-3597.	1.4	1
74	Transsphenoidal Surgery for Craniopharyngiomas. , 2017, , 403-425.		1
75	A Specific Mesenchymal Stem and Progenitor Cell (MSPC) Subpopulation with a Multi-Potent Gene Signature Is Transcriptionally Altered in the Setting of Myelodysplastic Syndrome (MDS) in Primary Human Bone Marrow Aspirates. Blood, 2019, 134, 1708-1708.	1.4	1
76	IL-1 Via IRAK1/4 Sustains Acute Myeloid Leukemia Stem Cells Following Treatment and Relapse. Blood, 2021, 138, 1175-1175.	1.4	1
77	A Novel Strategy for Repairing Multiple Myeloma Bone Lesions: Lessons From Murine Models. Journal of Bone and Mineral Research, 2019, 34, 781-782.	2.8	0
78	Bone Marrow and the Stem Cell Niche. , 2019, , 27-35.		0
79	Improved in vivo Experimental Screening Identifies an Anabolic Analog of 1,25 Dihydroxyvitamin D3 With Minimal Bone Resorption Activity. Journal of Bone and Mineral Research, 2020, 35, 621-622.	2.8	0
80	Osteoblastic Cells and the Hematopoietic Microenvironment: The Notch ligand Jagged1 Is Increased in Osteoblastic Stromal Cells by Parathyroid Hormone (PTH)Treatment Blood, 2004, 104, 1284-1284.	1.4	0
81	In Vivo Treatment with Prostaglandin E2 (PGE2) Selectively Expands Short-Term Hematopoietic Stem Cells Blood, 2007, 110, 1254-1254.	1.4	0
82	Microenvironmental Contribution to Dysfunctional Hematopoiesis in a Murine Model of Myelodysplastic Syndrome. Blood, 2014, 124, 4359-4359.	1.4	0
83	Modulation of Interaction of Human Osteoprogenitor Cells with Hematopoietic Stem and Progenitor Cells. Blood, 2014, 124, 2933-2933.	1.4	0
84	Restoration of the Bone Marrow Microenvironment Improves Hematopoietic Function in a Murine Model of Myelodysplastic Syndrome. Blood, 2015, 126, 358-358.	1.4	0
85	Osteocyte-Mediated Parathyroid Hormone (PTH) Signaling Regulates Hematopoietic Stem Cells Under Physiologic and Continuous PTH Exposure. Blood, 2015, 126, 1199-1199.	1.4	0
86	Bone Marrow Mesenchymal Stem Cells from Acute Myelogenous Leukemia Patients Demonstrate Adipogenic Differentiation Propensity. Blood, 2016, 128, 5064-5064.	1.4	0
87	CCL3 Regulates Normal Hematopoiesis but Is Not Essential for the Maintenance of a Long-Term Engrafting Hematopoietic Stem Cell. Blood, 2016, 128, 1482-1482.	1.4	0
88	Role of RasGRP3 in EPO/EPOR Signaling and Transmigration of Human Hematopoietic CD34+ Cells. Blood, 2018, 132, 4531-4531.	1.4	0
89	Role of the Niche in Hematopoietic Stem Cell Aging. Blood, 2020, 136, SCI1-SCI1.	1.4	0