Carles Rentero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9423677/publications.pdf Version: 2024-02-01

CADLES RENTEDO

#	Article	IF	CITATIONS
1	Quantitative imaging of membrane lipid order in cells and organisms. Nature Protocols, 2012, 7, 24-35.	12.0	364
2	PALM imaging and cluster analysis of protein heterogeneity at the cell surface. Journal of Biophotonics, 2010, 3, 446-454.	2.3	248
3	Actin Dynamics Drive Membrane Reorganization and Scission in Clathrin-Independent Endocytosis. Cell, 2010, 140, 540-553.	28.9	226
4	AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nature Communications, 2015, 6, 7176.	12.8	215
5	The biliary epithelium gives rise to liver progenitor cells. Hepatology, 2014, 60, 1367-1377.	7.3	158
6	Cell-to-Cell Heterogeneity in Lipid Droplets Suggests a Mechanism to Reduce Lipotoxicity. Current Biology, 2013, 23, 1489-1496.	3.9	152
7	A palmitoylation switch mechanism regulates Rac1 function and membrane organization. EMBO Journal, 2012, 31, 534-551.	7.8	150
8	Quantitative Microscopy: Protein Dynamics and Membrane Organisation. Traffic, 2009, 10, 962-971.	2.7	132
9	Cholesterol Regulates Syntaxin 6 Trafficking at trans-Golgi Network Endosomal Boundaries. Cell Reports, 2014, 7, 883-897.	6.4	104
10	Functional Implications of Plasma Membrane Condensation for T Cell Activation. PLoS ONE, 2008, 3, e2262.	2.5	96
11	Annexin A6 stimulates the membrane recruitment of p120GAP to modulate Ras and Raf-1 activity. Oncogene, 2005, 24, 5809-5820.	5.9	84
12	Annexin A6—Linking Ca2+ signaling with cholesterol transport. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 935-947.	4.1	77
13	Sphingomyelin organization is required for vesicle biogenesis at the Golgi complex. EMBO Journal, 2012, 31, 4535-4546.	7.8	74
14	Plasma membrane segregation during T cell activation: probing the order of domains. Current Opinion in Immunology, 2007, 19, 470-475.	5.5	67
15	Annexin A6-regulator of the EGFR/Ras signalling pathway and cholesterol homeostasis. International Journal of Biochemistry and Cell Biology, 2010, 42, 580-584.	2.8	66
16	Annexin A6 inhibits Ras signalling in breast cancer cells. Oncogene, 2009, 28, 363-377.	5.9	65
17	Annexin A6 is a scaffold for PKCα to promote EGFR inactivation. Oncogene, 2013, 32, 2858-2872.	5.9	64
18	Annexins – insights from knockout mice. Biological Chemistry, 2016, 397, 1031-1053.	2.5	64

CARLES RENTERO

#	Article	IF	CITATIONS
19	Identification and distribution of different mRNA variants produced by differential splicing in the human phosphodiesterase 9A gene. Biochemical and Biophysical Research Communications, 2003, 301, 686-692.	2.1	63
20	Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Molecular Biology of the Cell, 2011, 22, 4108-4123.	2.1	59
21	Annexin A6 is an organizer of membrane microdomains to regulate receptor localization and signalling. IUBMB Life, 2011, 63, 1009-1017.	3.4	58
22	Annexin A6 modulates TBC1D15/Rab7/StARD3 axis to control endosomal cholesterol export in NPC1 cells. Cellular and Molecular Life Sciences, 2020, 77, 2839-2857.	5.4	54
23	Role of cholesterol in SNARE-mediated trafficking on intracellular membranes. Journal of Cell Science, 2015, 128, 1071-81.	2.0	53
24	Annexin A6—A multifunctional scaffold in cell motility. Cell Adhesion and Migration, 2017, 11, 288-304.	2.7	53
25	Annexin A6 in the liver: From the endocytic compartment to cellular physiology. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 933-946.	4.1	52
26	Leukocyte Ig-like Receptor B4 (LILRB4) Is a Potent Inhibitor of FcÎ ³ RI-mediated Monocyte Activation via Dephosphorylation of Multiple Kinases. Journal of Biological Chemistry, 2009, 284, 34839-34848.	3.4	51
27	Annexins — Scaffolds modulating PKC localization and signaling. Cellular Signalling, 2014, 26, 1213-1225.	3.6	49
28	Annexins—Coordinators of Cholesterol Homeostasis in Endocytic Pathways. International Journal of Molecular Sciences, 2018, 19, 1444.	4.1	48
29	Annexin A6 and Late Endosomal Cholesterol Modulate Integrin Recycling and Cell Migration. Journal of Biological Chemistry, 2016, 291, 1320-1335.	3.4	43
30	LILRA5 is expressed by synovial tissue macrophages in rheumatoid arthritis, selectively induces proâ€inflammatory cytokines and ILâ€10 and is regulated by TNFâ€Î±, ILâ€10 and IFNâ€Î3. European Journal of Immunology, 2008, 38, 3459-3473.	2.9	38
31	Evidence for annexin <scp>A</scp> 6â€dependent plasma membrane remodelling of lipid domains. British Journal of Pharmacology, 2015, 172, 1677-1690.	5.4	38
32	Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Molecular Biology of the Cell, 2011, 22, 4108-4123.	2.1	36
33	Inhibition of H-Ras and MAPK is compensated by PKC-dependent pathways in annexin A6 expressing cells. Cellular Signalling, 2006, 18, 1006-1016.	3.6	35
34	Inhibition of Mitogen-Activated Protein Kinase Erk1/2 Promotes Protein Degradation of ATP Binding Cassette Transporters A1 and G1 in CHO and HuH7 Cells. PLoS ONE, 2013, 8, e62667.	2.5	35
35	Annexin Animal Models—From Fundamental Principles to Translational Research. International Journal of Molecular Sciences, 2021, 22, 3439.	4.1	33
36	Annexins in Adipose Tissue: Novel Players in Obesity. International Journal of Molecular Sciences, 2019, 20, 3449.	4.1	27

CARLES RENTERO

#	Article	IF	CITATIONS
37	Rac1 and Calmodulin Interactions Modulate Dynamics of ARF6â€Dependent Endocytosis. Traffic, 2011, 12, 1879-1896.	2.7	26
38	Annexin A6 regulates interleukinâ€2â€mediated Tâ€cell proliferation. Immunology and Cell Biology, 2016, 94, 543-553.	2.3	26
39	Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells. PLoS ONE, 2016, 11, e0151556.	2.5	25
40	Caveolin-1-dependent and -independent membrane domains. Journal of Lipid Research, 2009, 50, 1609-1620.	4.2	24
41	Cyclosporin A Decreases Apolipoprotein E Secretion from Human Macrophages via a Protein Phosphatase 2B-dependent and ATP-binding Cassette Transporter A1 (ABCA1)-independent Pathway. Journal of Biological Chemistry, 2009, 284, 24144-24154.	3.4	23
42	ROCK1 is a novel Rac1 effector to regulate tubular endocytic membrane formation during clathrin-independent endocytosis. Scientific Reports, 2017, 7, 6866.	3.3	22
43	Signal Transduction Pathways Provide Opportunities to Enhance HDL and apoAl-Dependent Reverse Cholesterol Transport. Current Pharmaceutical Biotechnology, 2012, 13, 352-364.	1.6	21
44	Annexin A6 regulates adipocyte lipid storage and adiponectin release. Molecular and Cellular Endocrinology, 2017, 439, 419-430.	3.2	20
45	Annexin A6 Is Critical to Maintain Glucose Homeostasis and Survival During Liver Regeneration in Mice. Hepatology, 2020, 72, 2149-2164.	7.3	20
46	The MAL protein is crucial for proper membrane condensation at the ciliary base, which is required for primary cilium elongation. Journal of Cell Science, 2015, 128, 2261-2270.	2.0	19
47	Annexins: Ca2+ Effectors Determining Membrane Trafficking in the Late Endocytic Compartment. Advances in Experimental Medicine and Biology, 2017, 981, 351-385.	1.6	19
48	Altered hepatic glucose homeostasis in AnxA6-KO mice fed a high-fat diet. PLoS ONE, 2018, 13, e0201310.	2.5	18
49	Dynamics of KRas on endosomes: involvement of acidic phospholipids in its association. FASEB Journal, 2014, 28, 3023-3037.	0.5	17
50	The cross-talk of LDL-cholesterol with cell motility: Insights from the Niemann Pick Type C1 mutation and altered integrin trafficking. Cell Adhesion and Migration, 2015, 9, 384-391.	2.7	17
51	Role of hepatic Annexin A6 in fatty acid-induced lipid droplet formation. Experimental Cell Research, 2017, 358, 397-410.	2.6	17
52	Caveolin-1-Mediated Apolipoprotein A-I Membrane Binding Sites Are Not Required for Cholesterol Efflux. PLoS ONE, 2011, 6, e23353.	2.5	13
53	Specific use of start codons and cellular localization of splice variants of human phosphodiesterase 9A gene. BMC Molecular Biology, 2006, 7, 39.	3.0	12
54	Cholesterol Overload: Contact Sites to the Rescue!. Contact (Thousand Oaks (Ventura County, Calif) Tj ETQq0 C	0 0 fgBT /0	Overlock 10 Ti

CARLES RENTERO

#	Article	IF	CITATIONS
55	Annexin A6 improves antiâ€migratory and antiâ€invasive properties of tyrosine kinase inhibitors in EGFR overexpressing human squamous epithelial cells. FEBS Journal, 2020, 287, 2961-2978.	4.7	12
56	Selective Degradation Permits a Feedback Loop Controlling Annexin A6 and Cholesterol Levels in Endolysosomes of NPC1 Mutant Cells. Cells, 2020, 9, 1152.	4.1	12
57	Annexin A6 and NPC1 regulate LDL-inducible cell migration and distribution of focal adhesions. Scientific Reports, 2022, 12, 596.	3.3	11
58	GTPases Rac1 and Ras Signaling from Endosomes. Progress in Molecular and Subcellular Biology, 2018, 57, 65-105.	1.6	10
59	Annexins Bridging the Gap: Novel Roles in Membrane Contact Site Formation. Frontiers in Cell and Developmental Biology, 2021, 9, 797949.	3.7	10
60	Pleiotropic Roles of Calmodulin in the Regulation of KRas and Rac1 GTPases: Functional Diversity in Health and Disease. International Journal of Molecular Sciences, 2020, 21, 3680.	4.1	9
61	Annexins and Endosomal Signaling. Methods in Enzymology, 2014, 535, 55-74.	1.0	8
62	Linking Late Endosomal Cholesterol with Cancer Progression and Anticancer Drug Resistance. International Journal of Molecular Sciences, 2022, 23, 7206.	4.1	7
63	KRAS phosphorylation regulates cell polarization and tumorigenic properties in colorectal cancer. Oncogene, 2021, 40, 5730-5740.	5.9	5
64	Lack of Annexin A6 Exacerbates Liver Dysfunction and Reduces Lifespan of Niemann-Pick Type C Protein–Deficient Mice. American Journal of Pathology, 2021, 191, 475-486.	3.8	3
65	Membrane Domains as Signaling Centers in Macrophages and T-Cells: From Concepts to Experiments. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2008, 8, 336-348.	0.5	1
66	Novel therapeutic avenues for the study of chronic liver disease and regeneration: The foundation of the Iberoamerican Consortium for the study of liver Cirrhosis. GastroenterologÃa Y HepatologÃa, 2023, 46, 322-328.	0.5	0