J Herbert Waite

List of Publications by Citations

Source: https://exaly.com/author-pdf/9423537/j-herbert-waite-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

152 17,153 130 70 h-index g-index citations papers 18,972 8.7 158 7.02 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
152	pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 2651-5	11.5	1114
151	Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. <i>Science</i> , 2010 , 328, 216-20	33.3	688
150	Polyphosphoprotein from the adhesive pads of Mytilus edulis. <i>Biochemistry</i> , 2001 , 40, 2887-93	3.2	498
149	BIOLOGICAL ADHESIVES. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. <i>Science</i> , 2015 , 349, 628-32	33.3	410
148	Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 3782-6	11.5	409
147	Cross-linking in adhesive quinoproteins: studies with model decapeptides. <i>Biochemistry</i> , 2000 , 39, 1114	73523	396
146	Strong reversible Fe3+-mediated bridging between dopa-containing protein films in water. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 12850-3	11.5	380
145	Surface-initiated self-healing of polymers in aqueous media. <i>Nature Materials</i> , 2014 , 13, 867-72	27	361
144	Toughening elastomers using mussel-inspired iron-catechol complexes. <i>Science</i> , 2017 , 358, 502-505	33.3	329
143	Mussel adhesion - essential footwork. <i>Journal of Experimental Biology</i> , 2017 , 220, 517-530	3	320
142	Adhesion a la moule. <i>Integrative and Comparative Biology</i> , 2002 , 42, 1172-80	2.8	318
141	Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. <i>Nature Chemical Biology</i> , 2011 , 7, 588-90	11.7	312
140	Mussel Adhesion: Finding the Tricks Worth Mimicking 2005 , 81, 297-317		299
139	The transition from stiff to compliant materials in squid beaks. <i>Science</i> , 2008 , 319, 1816-9	33.3	287
138	The Contribution of DOPA to Substrate-Peptide Adhesion and Internal Cohesion of Mussel-Inspired Synthetic Peptide Films. <i>Advanced Functional Materials</i> , 2010 , 20, 4196-4205	15.6	280
137	Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. <i>Nature Materials</i> , 2016 , 15, 407-412	27	278
136	Hydroxyarginine-containing polyphenolic proteins in the adhesive plaques of the marine mussel Mytilus edulis. <i>Journal of Biological Chemistry</i> , 1995 , 270, 20183-92	5.4	257

135	Extensible collagen in mussel byssus: a natural block copolymer. <i>Science</i> , 1997 , 277, 1830-2	33.3	216
134	Ferric Ion Complexes of a DOPA-Containing Adhesive Protein fromMytilus edulis. <i>Inorganic Chemistry</i> , 1996 , 35, 7572-7577	5.1	215
133	Cement proteins of the tube-building polychaete Phragmatopoma californica. <i>Journal of Biological Chemistry</i> , 2005 , 280, 42938-44	5.4	212
132	Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. <i>Journal of Biological Chemistry</i> , 2006 , 281, 26150-8	5.4	212
131	Adhesion of mussel foot proteins to different substrate surfaces. <i>Journal of the Royal Society Interface</i> , 2013 , 10, 20120759	4.1	208
130	The tube cement of Phragmatopoma californica: a solid foam. <i>Journal of Experimental Biology</i> , 2004 , 207, 4727-34	3	198
129	Adaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin films. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 15680-5	11.5	189
128	High-performance mussel-inspired adhesives of reduced complexity. <i>Nature Communications</i> , 2015 , 6, 8663	17.4	186
127	Protective coatings on extensible biofibres. <i>Nature Materials</i> , 2007 , 6, 669-72	27	186
126	Protein- and metal-dependent interactions of a prominent protein in mussel adhesive plaques. <i>Journal of Biological Chemistry</i> , 2010 , 285, 25850-8	5.4	181
125	Viscosity and interfacial properties in a mussel-inspired adhesive coacervate. Soft Matter, 2010, 6, 3232	-3,2636	181
124	Peptide repeats in a mussel glue protein: theme and variations. <i>Biochemistry</i> , 1985 , 24, 5010-4	3.2	179
123	Adhesion of mussel foot protein-3 to TiO2 surfaces: the effect of pH. <i>Biomacromolecules</i> , 2013 , 14, 107	267 9	177
122	Hydrophobic enhancement of Dopa-mediated adhesion in a mussel foot protein. <i>Journal of the American Chemical Society</i> , 2013 , 135, 377-83	16.4	173
121	Tuning underwater adhesion with cation-linteractions. <i>Nature Chemistry</i> , 2017 , 9, 473-479	17.6	171
120	MINIREVIEW B OLYPHENOLS AND OXIDASES IN SUBSTRATUM ADHESION BY MARINE ALGAE AND MUSSELS. <i>Journal of Phycology</i> , 1998 , 34, 1-8	3	171
119	Metals and the integrity of a biological coating: the cuticle of mussel byssus. <i>Langmuir</i> , 2009 , 25, 3323-6	54	162
118	Exploring molecular and mechanical gradients in structural bioscaffolds. <i>Biochemistry</i> , 2004 , 43, 7653-6	23.2	159

117	Rotational echo double resonance detection of cross-links formed in mussel byssus under high-flow stress. <i>Journal of Biological Chemistry</i> , 1999 , 274, 20293-5	5.4	156
116	Adhesion of mussel foot protein Mefp-5 to mica: an underwater superglue. <i>Biochemistry</i> , 2012 , 51, 651	l- <u>1</u> 82	155
115	ADHESION IN BYSSALLY ATTACHED BIVALVES. <i>Biological Reviews</i> , 1983 , 58, 209-231	13.5	155
114	Yield and post-yield behavior of mussel byssal thread: a self-healing biomolecular material. <i>Biomacromolecules</i> , 2001 , 2, 906-11	6.9	148
113	Polarographic and Spectrophotometric Investigation of Iron(III) Complexation to 3,4-Dihydroxyphenylalanine-Containing Peptides and Proteins from Mytilus edulis. <i>Inorganic Chemistry</i> , 1994 , 33, 5819-5824	5.1	148
112	A mussel-derived one component adhesive coacervate. <i>Acta Biomaterialia</i> , 2014 , 10, 1663-70	10.8	147
111	Zinc and mechanical prowess in the jaws of Nereis, a marine worm. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 9144-9	11.5	138
110	Holdfast heroics: comparing the molecular and mechanical properties of Mytilus californianus byssal threads. <i>Journal of Experimental Biology</i> , 2007 , 210, 4307-18	3	133
109	Effects of interfacial redox in mussel adhesive protein films on mica. Advanced Materials, 2011, 23, 2362	2-564	131
108	An Underwater Surface-Drying Peptide Inspired by a Mussel Adhesive Protein. <i>Advanced Functional Materials</i> , 2016 , 26, 3496-3507	15.6	125
107	Versatile tuning of supramolecular hydrogels through metal complexation of oxidation-resistant catechol-inspired ligands. <i>Soft Matter</i> , 2013 , 9,	3.6	124
106	Probing the adhesive footprints of Mytilus californianus byssus. <i>Journal of Biological Chemistry</i> , 2006 , 281, 11090-6	5.4	124
105	Defining the Catechol-Cation Synergy for Enhanced Wet Adhesion to Mineral Surfaces. <i>Journal of the American Chemical Society</i> , 2016 , 138, 9013-6	16.4	116
104	Collagen insulated from tensile damage by domains that unfold reversibly: in situ X-ray investigation of mechanical yield and damage repair in the mussel byssus. <i>Journal of Structural Biology</i> , 2009 , 167, 47-54	3.4	109
103	The formation of mussel byssus: anatomy of a natural manufacturing process. <i>Results and Problems in Cell Differentiation</i> , 1992 , 19, 27-54	1.4	108
102	trans-2,3-cis-3,4-Dihydroxyproline, a New Naturally Occurring Amino Acid, Is the Sixth Residue in the Tandemly Repeated Consensus Decapeptides of an Adhesive Protein from Mytilus edulis. Journal of the American Chemical Society, 1994 , 116, 10803-10804	16.4	106
101	Cement precursor proteins of the reef-building polychaete Phragmatopoma californica (Fewkes). <i>Biochemistry</i> , 1992 , 31, 5733-8	3.2	105
100	Mini-review: the role of redox in Dopa-mediated marine adhesion. <i>Biofouling</i> , 2012 , 28, 865-77	3.3	101

(2009-1997)

99	Tough tendons. Mussel byssus has collagen with silk-like domains. <i>Journal of Biological Chemistry</i> , 1997 , 272, 32623-7	5.4	101
98	Critical role of zinc in hardening of Nereis jaws. <i>Journal of Experimental Biology</i> , 2006 , 209, 3219-25	3	101
97	Microphase Behavior and Enhanced Wet-Cohesion of Synthetic Copolyampholytes Inspired by a Mussel Foot Protein. <i>Journal of the American Chemical Society</i> , 2015 , 137, 9214-7	16.4	100
96	Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient. <i>Nature Chemical Biology</i> , 2015 , 11, 488-95	11.7	98
95	Mapping chemical gradients within and along a fibrous structural tissue, mussel byssal threads. Journal of Biological Chemistry, 2005 , 280, 39332-6	5.4	95
94	Adhesion mechanism in a DOPA-deficient foot protein from green mussels(). Soft Matter, 2012, 8, 5640	-5648	94
93	Jumbo squid beaks: inspiration for design of robust organic composites. Acta Biomaterialia, 2007, 3, 139	9 :40: 8	92
92	Improved performance of protected catecholic polysiloxanes for bioinspired wet adhesion to surface oxides. <i>Journal of the American Chemical Society</i> , 2012 , 134, 20139-45	16.4	91
91	Elastomeric gradients: a hedge against stress concentration in marine holdfasts?. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2002 , 357, 143-53	5.8	91
90	Promotion of osteoblast proliferation on complex coacervation-based hyaluronic acid - recombinant mussel adhesive protein coatings on titanium. <i>Biomaterials</i> , 2010 , 31, 1080-4	15.6	88
89	Proteins in load-bearing junctions: the histidine-rich metal-binding protein of mussel byssus. <i>Biochemistry</i> , 2006 , 45, 14223-31	3.2	87
88	Interfacial pH during mussel adhesive plaque formation. <i>Biofouling</i> , 2015 , 31, 221-7	3.3	86
87	Structure and mucoadhesion of mussel glue protein in dilute solution. <i>Biochemistry</i> , 1998 , 37, 14108-12	3.2	80
86	Non-entropic and reversible long-range deformation of an encapsulating bioelastomer. <i>Nature Materials</i> , 2009 , 8, 910-6	27	74
85	Catechol Oxidase in the Byssus of the Common Mussel, Mytilus Edulis L <i>Journal of the Marine Biological Association of the United Kingdom</i> , 1985 , 65, 359-371	1.1	73
84	Cross-linking chemistry of squid beak. <i>Journal of Biological Chemistry</i> , 2010 , 285, 38115-24	5.4	71
83	A molecular, morphometric and mechanical comparison of the structural elements of byssus from Mytilus edulis and Mytilus galloprovincialis. <i>Journal of Experimental Biology</i> , 2002 , 205, 1807-1817	3	70
82	Stiff coatings on compliant biofibers: the cuticle of Mytilus californianus byssal threads. <i>Biochemistry</i> , 2009 , 48, 2752-9	3.2	69

81	Composition and ultrastructure of the byssus of Mytilus edulis. <i>Journal of Morphology</i> , 1986 , 189, 261-7	'0 1.6	68
80	Surface force measurements and simulations of mussel-derived peptide adhesives on wet organic surfaces. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 433	3 1 ¹ 7 ⁵	65
79	Bridging adhesion of mussel-inspired peptides: role of charge, chain length, and surface type. <i>Langmuir</i> , 2015 , 31, 1105-12	4	64
78	Marine Surfaces and the Expression of Specific Byssal Adhesive Protein Variants in Mytilus. <i>Marine Biotechnology</i> , 2000 , 2, 352-363	3.4	64
77	Sea star tenacity mediated by a protein that fragments, then aggregates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 6317-22	11.5	63
76	Chemical Subtleties of Mussel and Polychaete Holdfasts 2006 , 125-143		62
75	The role of calcium and magnesium in the concrete tubes of the sandcastle worm. <i>Journal of Experimental Biology</i> , 2007 , 210, 1481-8	3	61
74	Mussel glue from Mytilus californianus Conrad: a comparative study. <i>Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology,</i> 1986 , 156, 491-6	2.2	60
73	Intrinsic surface-drying properties of bioadhesive proteins. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 11253-6	16.4	57
72	Mussel foot protein-1 (mcfp-1) interaction with titania surfaces(). <i>Journal of Materials Chemistry</i> , 2012 , 22, 15530-15533		56
71	pH-dependent locking of giant mesogens in fibers drawn from mussel byssal collagens. <i>Biomacromolecules</i> , 2008 , 9, 1480-6	6.9	56
70	Halogenated veneers: protein cross-linking and halogenation in the jaws of nereis, a marine polychaete worm. <i>ChemBioChem</i> , 2006 , 7, 1392-9	3.8	55
69	Mussels as a model system for integrative ecomechanics. <i>Annual Review of Marine Science</i> , 2015 , 7, 443-	-693.4	53
68	Dynamics of mussel plaque detachment. <i>Soft Matter</i> , 2015 , 11, 6832-9	3.6	50
67	How Nature Modulates a Fiber's Mechanical Properties: Mechanically Distinct Fibers Drawn from Natural Mesogenic Block Copolymer Variants. <i>Advanced Materials</i> , 2009 , 21, 440-444	24	50
66	Giant bent-core mesogens in the thread forming process of marine mussels. <i>Biomacromolecules</i> , 2004 , 5, 1351-5	6.9	50
65	Hyperunstable matrix proteins in the byssus of Mytilus galloprovincialis. <i>Journal of Experimental Biology</i> , 2009 , 212, 2224-36	3	49
64	Local Water Dynamics in Coacervated Polyelectrolytes Monitored Through Dynamic Nuclear Polarization-Enhanced H NMR. <i>Macromolecules</i> , 2009 , 42, 7404-7412	5.5	49

63	Mineral minimization in nature alternative teeth. Journal of the Royal Society Interface, 2007, 4, 19-31	4.1	49
62	A glycosylated byssal precursor protein from the green mussel Perna viridis with modified dopa side-chains. <i>Biofouling</i> , 2004 , 20, 101-15	3.3	46
61	Determination of (catecholato)borate complexes using difference spectrophotometry. <i>Analytical Chemistry</i> , 1984 , 56, 1935-1939	7.8	46
60	A cohort of new adhesive proteins identified from transcriptomic analysis of mussel foot glands. Journal of the Royal Society Interface, 2017 , 14,	4.1	45
59	Significant Performance Enhancement of Polymer Resins by Bioinspired Dynamic Bonding. <i>Advanced Materials</i> , 2017 , 29, 1703026	24	45
58	Collagen-binding matrix proteins from elastomeric extraorganismic byssal fibers. Biomacromolecules, 2002 , 3, 1240-8	6.9	45
57	Rate-Dependent Stiffness and Recovery in Interpenetrating Network Hydrogels through Sacrificial Metal Coordination Bonds. <i>ACS Macro Letters</i> , 2015 , 4, 1200-1204	6.6	44
56	Fluorescence Investigations into Complex Coacervation between Polyvinylimidazole and Sodium Alginate. <i>Macromolecules</i> , 2009 , 42, 2168-2176	5.5	44
55	Periostracin IA soluble precursor of sclerotized periostracum inMytilus edulis L <i>Journal of Comparative Physiology ? B</i> , 1979 , 130, 301-307		44
54	Schmitt trigger using a self-healing ionic liquid gated transistor. <i>Advanced Materials</i> , 2015 , 27, 3331-5	24	43
53	Optimized DPPH assay in a detergent-based buffer system for measuring antioxidant activity of proteins. <i>MethodsX</i> , 2014 , 1, 233-238	1.9	43
52	Three intrinsically unstructured mussel adhesive proteins, mfp-1, mfp-2, and mfp-3: analysis by circular dichroism. <i>Protein Science</i> , 2012 , 21, 1689-95	6.3	43
51	Diverse Strategies of Protein Sclerotization in Marine Invertebrates: Structure P roperty Relationships in Natural Biomaterials. <i>Advances in Insect Physiology</i> , 2010 , 38, 75-133	2.5	42
50	A nonmineralized approach to abrasion-resistant biomaterials. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 13559-64	11.5	42
49	Glycosylated hydroxytryptophan in a mussel adhesive protein from Perna viridis. <i>Journal of Biological Chemistry</i> , 2009 , 284, 23344-52	5.4	41
48	Changing environments and structureproperty relationships in marine biomaterials. <i>Journal of Experimental Biology</i> , 2012 , 215, 873-83	3	40
47	Melanin and Glycera jaws: emerging dark side of a robust biocomposite structure. <i>Journal of Biological Chemistry</i> , 2006 , 281, 34826-32	5.4	40
46	Boronate complex formation with Dopa containing mussel adhesive protein retards ph-induced oxidation and enables adhesion to mica. <i>PLoS ONE</i> , 2014 , 9, e108869	3.7	39

45	Enzymatic Tempering of a Mussel Adhesive Protein Film. <i>Langmuir</i> , 1998 , 14, 1139-1147	4	38
44	Characterization of the adhesive from cuvierian tubules of the sea cucumber Holothuria forskali (Echinodermata, Holothuroidea). <i>Marine Biotechnology</i> , 2003 , 5, 45-57	3.4	35
43	Distribution and Role of Trace Transition Metals in Glycera Worm Jaws Studied with Synchrotron Microbeam Techniques. <i>Chemistry of Materials</i> , 2005 , 17, 2927-2931	9.6	33
42	Characterization of the protein fraction of the temporary adhesive secreted by the tube feet of the sea star Asterias rubens. <i>Biofouling</i> , 2012 , 28, 289-303	3.3	32
41	The staying power of adhesion-associated antioxidant activity in Mytilus californianus. <i>Journal of the Royal Society Interface</i> , 2015 , 12, 20150614	4.1	31
40	Redox Capacity of an Extracellular Matrix Protein Associated with Adhesion in Mytilus californianus. <i>Biochemistry</i> , 2016 , 55, 2022-30	3.2	30
39	Cloning, sequencing and sites of expression of genes for the hydroxyarginine-containing adhesive-plaque protein of the mussel Mytilus galloprovincialis. <i>FEBS Journal</i> , 1996 , 239, 172-6		30
38	Peptide Length and Dopa Determine Iron-Mediated Cohesion of Mussel Foot Proteins. <i>Advanced Functional Materials</i> , 2015 , 25, 5840-5847	15.6	29
37	Mussel adhesive protein provides cohesive matrix for collagen type-1∃ <i>Biomaterials</i> , 2015 , 51, 51-57	15.6	29
36	Asymmetric collapse in biomimetic complex coacervates revealed by local polymer and water dynamics. <i>Biomacromolecules</i> , 2013 , 14, 1395-402	6.9	29
35	Halogenated DOPA in a Marine Adhesive Protein. Journal of Adhesion, 2009, 85, 126		29
34	Mussel Coating Protein-Derived Complex Coacervates Mitigate Frictional Surface Damage. <i>ACS Biomaterials Science and Engineering</i> , 2015 , 1, 1121-1128	5.5	27
33	Dehydro-Dopa: A Hidden Participant in Mussel Adhesion. <i>Biochemistry</i> , 2016 , 55, 743-50	3.2	27
32	The microscopic network structure of mussel (Mytilus) adhesive plaques. <i>Journal of the Royal Society Interface</i> , 2015 , 12, 20150827	4.1	26
31	Marine hydroid perisarc: a chitin- and melanin-reinforced composite with DOPA-iron(III) complexes. <i>Acta Biomaterialia</i> , 2013 , 9, 8110-7	10.8	26
30	Exploring gradients of halogens and zinc in the surface and subsurface of Nereis jaws. <i>Langmuir</i> , 2006 , 22, 8465-71	4	25
29	Sugary interfaces mitigate contact damage where stiff meets soft. <i>Nature Communications</i> , 2016 , 7, 11	9 23 .4	25
28	Intrinsic Surface-Drying Properties of Bioadhesive Proteins. <i>Angewandte Chemie</i> , 2014 , 126, 11435-114	13 § .6	23

(2019-2000)

27	Interaction of the Adhesive Protein Mefp-1 and Fibrinogen with Methyl and Oligo (Ethylene Glycol)-terminated Self-assembled Monolayers 2000 , 73, 161-177		23	
26	Phase-dependent redox insulation in mussel adhesion. <i>Science Advances</i> , 2020 , 6, eaaz6486	14.3	20	
25	Antioxidant efficacy and adhesion rescue by a recombinant mussel foot protein-6. <i>Biotechnology Progress</i> , 2013 , 29, 1587-93	2.8	20	
24	Oxidative stress and the mechanical properties of naturally occurring chimeric collagen-containing fibers. <i>Biophysical Journal</i> , 2001 , 81, 3590-5	2.9	20	
23	Simple peptide coacervates adapted for rapid pressure-sensitive wet adhesion. <i>Soft Matter</i> , 2017 , 13, 9122-9131	3.6	18	
22	Tough coating proteins: subtle sequence variation modulates cohesion. <i>Biomacromolecules</i> , 2015 , 16, 1002-8	6.9	17	
21	Four-stranded coiled-coil elastic protein in the byssus of the giant clam, Tridacna maxima. <i>Biomacromolecules</i> , 2012 , 13, 332-41	6.9	17	
20	Eggshell formation in Bdelloura candida, an ectoparasitic turbellarian of the horseshoe crab Limulus polyphemus. <i>The Journal of Experimental Zoology</i> , 1993 , 265, 549-57		17	
19	Layer-by-layer polyelectrolyte deposition: a mechanism for forming biocomposite materials. <i>Biomacromolecules</i> , 2013 , 14, 1715-26	6.9	16	
18	Effects of hydration on mechanical properties of a highly sclerotized tissue. <i>Biophysical Journal</i> , 2008 , 94, 3266-72	2.9	16	
17	Intertidal exposure favors the soft-studded armor of adaptive mussel coatings. <i>Nature Communications</i> , 2018 , 9, 3424	17.4	15	
16	Dueling Backbones: Comparing Peptoid and Peptide Analogues of a Mussel Adhesive Protein. <i>Macromolecules</i> , 2020 , 53, 6767-6779	5.5	11	
15	Force distribution and multiscale mechanics in the mussel byssus. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2019 , 374, 20190202	5.8	10	
14	A Cation-Methylene-Phenyl Sequence Encodes Programmable Poly(Ionic Liquid) Coacervation and Robust Underwater Adhesion. <i>Advanced Functional Materials</i> ,2105464	15.6	9	
13	Influence of multi-cycle loading on the structure and mechanics of marine mussel plaques. <i>Soft Matter</i> , 2017 , 13, 7381-7388	3.6	8	
12	Translational bioadhesion research: embracing biology without tokenism. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2019 , 374, 20190207	5.8	6	
11	Effects of sea water pH on marine mussel plaque maturation. Soft Matter, 2020, 16, 9339-9346	3.6	5	
10	The Thiol-Rich Interlayer in the Shell/Core Architecture of Mussel Byssal Threads. <i>Langmuir</i> , 2019 , 35, 15985-15991	4	3	

9	A Microcosm of Wet Adhesion: Dissecting Protein Interactions in Mussel Attachment Plaques319-349		3
8	In-situ Raman Spectroscopic Imaging of a Mussel Coating and Adhesive 2010 ,		2
7	Heavy Metals in the Jaws of Invertebrates 2010 , 295-325		2
6	Nano-Mechanical Investigation of the Byssal Cuticle, a Protective Coating of a Bio-Elastomer. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 841, R3.7.1/Y3.7.1		2
5	The Jaws of Nereis: Microstructure and Mechanical Properties. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 874, 1		2
4	Molecular Context of Dopa Influences Adhesion of Mussel-Inspired Peptides. <i>Journal of Physical Chemistry B</i> , 2021 , 125, 9999-10008	3.4	1
3	Viscoelastic analysis of mussel threads reveals energy dissipative mechanisms <i>Journal of the Royal Society Interface</i> , 2022 , 19, 20210828	4.1	1
2	Nanolatticed Architecture Mitigates Damage in Shark Egg Cases. <i>Nano Letters</i> , 2021 , 21, 8080-8085	11.5	Ο

Nano-Mechanical Investigation of the Byssal Cuticle, a Protective Coating of a Bio-Elastomer. Materials Research Society Symposia Proceedings, **2004**, 844, 1