Luca Artiglia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9423495/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct evidence of cobalt oxyhydroxide formation on a La _{0.2} Sr _{0.8} CoO ₃ perovskite water splitting catalyst. Journal of Materials Chemistry A, 2022, 10, 2434-2444.	10.3	12
2	In situ/operando investigation of catalytic and electrocatalytic interfaces. Journal Physics D: Applied Physics, 2022, 55, 060201.	2.8	0
3	Reactivation of catalysts for methanol-to-hydrocarbons conversion with hydrogen. Journal of Catalysis, 2022, 407, 54-64.	6.2	9
4	Liquid–Gas Interface of Iron Aqueous Solutions and Fenton Reagents. Journal of Physical Chemistry Letters, 2022, 13, 2994-3001.	4.6	7
5	In situ study of low-temperature dry reforming of methane over La2Ce2O7 and LaNiO3 mixed oxides. Applied Catalysis B: Environmental, 2022, 315, 121528.	20.2	15
6	Reply to "Comment on â€~Liquid–Gas Interface of Iron Aqueous Solutions and Fenton Reagents'― Jou of Physical Chemistry Letters, 2022, 13, 6681-6682.	ırnal 4.6	2
7	A stable low-temperature H2-production catalyst by crowding Pt on α-MoC. Nature, 2021, 589, 396-401.	27.8	290
8	Operando characterisation of alumina-supported bimetallic Pd–Pt catalysts during methane oxidation in dry and wet conditions. Journal Physics D: Applied Physics, 2021, 54, 174006.	2.8	8
9	Size of Ceria Particles Influences Surface Hydroxylation and Hydroxyl Stability. Journal of Physical Chemistry C, 2021, 125, 9303-9309.	3.1	10
10	Interfacial supercooling and the precipitation of hydrohalite in frozen NaCl solutions as seen by X-ray absorption spectroscopy. Cryosphere, 2021, 15, 2001-2020.	3.9	8
11	Ordered Hydrogen Bonding Structure of Water Molecules Adsorbed on Silver Iodide Particles under Subsaturated Conditions. Journal of Physical Chemistry C, 2021, 125, 11628-11635.	3.1	9
12	On the Stability of Ptâ€Based Catalysts in HBr/Br ₂ Solution. Helvetica Chimica Acta, 2021, 104, e2100082.	1.6	1
13	Stable Palladium Oxide Clusters Encapsulated in Silicalite-1 for Complete Methane Oxidation. ACS Catalysis, 2021, 11, 7371-7382.	11.2	34
14	Enhanced Reducibility of the Ceria–Tin Oxide Solid Solution Modifies the CO Oxidation Mechanism at the Platinum–Oxide Interface. ACS Catalysis, 2021, 11, 9435-9449.	11.2	19
15	Impact of Tetrabutylammonium on the Oxidation of Bromide by Ozone. ACS Earth and Space Chemistry, 2021, 5, 3008-3021.	2.7	11
16	Influence of Hydrogen Pressure on the Structure of Platinum–Titania Catalysts. Journal of Physical Chemistry C, 2021, 125, 22531-22538.	3.1	9
17	Temperature and Reaction Environment Influence the Nature of Platinum Species Supported on Ceria. ACS Catalysis, 2021, 11, 13041-13049.	11.2	13
18	A surface-promoted redox reaction occurs spontaneously on solvating inorganic aerosol surfaces. Science, 2021, 374, 747-752.	12.6	28

Luca Artiglia

#	Article	IF	CITATIONS
19	Strong Promoting Effect of Gold Nanoparticles on the CO Abatement Catalytic Activity of CoO x /Clayã€Bonded SiC Catalysts Produced by AAâ€MOCVD Method Using Co(acac) 2 as Precursor. ChemistrySelect, 2020, 5, 13878-13887.	1.5	0
20	The dynamics of overlayer formation on catalyst nanoparticles and strong metal-support interaction. Nature Communications, 2020, 11, 3220.	12.8	151
21	Reversibly Physisorbed and Chemisorbed Water on Carboxylic Salt Surfaces Under Atmospheric Conditions. Journal of Physical Chemistry C, 2020, 124, 5263-5269.	3.1	18
22	Probing the solid–liquid interface with tender x rays: A new ambient-pressure x-ray photoelectron spectroscopy endstation at the Swiss Light Source. Review of Scientific Instruments, 2020, 91, 023103.	1.3	45
23	Surface Propensity of Aqueous Atmospheric Bromine at the Liquid–Gas Interface. Journal of Physical Chemistry Letters, 2020, 11, 3422-3429.	4.6	22
24	Kinetics of the Thermal Oxidation of Ir(100) toward IrO ₂ Studied by Ambient-Pressure X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 3601-3607.	4.6	21
25	Role of Water on the Structure of Palladium for Complete Oxidation of Methane. ACS Catalysis, 2020, 10, 5783-5792.	11.2	74
26	Surface Segregation Acts as Surface Engineering for the Oxygen Evolution Reaction on Perovskite Oxides in Alkaline Media. Chemistry of Materials, 2020, 32, 5256-5263.	6.7	16
27	Disordered Adsorbed Water Layers on TiO ₂ Nanoparticles under Subsaturated Humidity Conditions at 235 K. Journal of Physical Chemistry Letters, 2019, 10, 7433-7438.	4.6	11
28	Variation of Aluminium Distribution in Small‣ized ZSMâ€5 Crystals during Desilication. Chemistry - A European Journal, 2019, 25, 15879-15886.	3.3	10
29	Multiple Reaction Paths for CO Oxidation on a 2D SnO <i>_x</i> Nanoâ€Oxide on the Pt(110) Surface: Intrinsic Reactivity and Spillover. Advanced Materials Interfaces, 2019, 6, 1801874.	3.7	7
30	In Situ X-ray Photoelectron Spectroscopy Detects Multiple Active Sites Involved in the Selective Anaerobic Oxidation of Methane in Copper-Exchanged Zeolites. ACS Catalysis, 2019, 9, 6728-6737.	11.2	38
31	CeO _{<i>x</i>} /TiO ₂ (Rutile) Nanocomposites for the Low-Temperature Dehydrogenation of Ethanol to Acetaldehyde: A Diffuse Reflectance Infrared Fourier Transform Spectroscopy–Mass Spectrometry Study. ACS Applied Nano Materials, 2019, 2, 3434-3443.	5.0	11
32	Cu–Al Spinel as a Highly Active and Stable Catalyst for the Reverse Water Gas Shift Reaction. ACS Catalysis, 2019, 9, 6243-6251.	11.2	76
33	Role of Bismuth in the Stability of Pt–Bi Bimetallic Catalyst for Methane Mediated Deoxygenation of Guaiacol, an APXPS Study. ACS Catalysis, 2019, 9, 3694-3699.	11.2	11
34	Design and performance of a new setup for spatially resolved transmission X-ray photoelectron spectroscopy at the Swiss Light Source. Journal of Synchrotron Radiation, 2019, 26, 785-792.	2.4	4
35	Ambient Pressure Photoelectron Spectroscopy: Opportunities in Catalysis from Solids to Liquids and Introducing Time Resolution. ChemCatChem, 2018, 10, 666-682.	3.7	77
36	Pre-melting and the adsorption of formic acid at the air–ice interface at 253 K as seen by NEXAFS and XPS. Physical Chemistry Chemical Physics, 2018, 20, 24408-24417.	2.8	14

Luca Artiglia

#	Article	IF	CITATIONS
37	X-Ray Excited Electron Spectroscopy to Study Gas–Liquid Interfaces of Atmospheric Relevance. , 2018, , 135-166.		16
38	Cerium Oxide Nanostructures on Titania: Effect of the Structure and Stoichiometry on the Reactivity Toward Ethanol Oxidation. Journal of Physical Chemistry C, 2018, 122, 20809-20816.	3.1	3
39	Subnanometer Gold Clusters on Amino-Functionalized Silica: An Efficient Catalyst for the Synthesis of 1,3-Diynes by Oxidative Alkyne Coupling. ACS Catalysis, 2017, 7, 3414-3418.	11.2	40
40	Introducing Time Resolution to Detect Ce ³⁺ Catalytically Active Sites at the Pt/CeO ₂ Interface through Ambient Pressure X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 102-108.	4.6	80
41	A surface-stabilized ozonide triggers bromide oxidation at the aqueous solution-vapour interface. Nature Communications, 2017, 8, 700.	12.8	59
42	Coexistence of Physisorbed and Solvated HCl at Warm Ice Surfaces. Journal of Physical Chemistry Letters, 2017, 8, 4757-4762.	4.6	26
43	Experimental Evidence for the Formation of Solvation Shells by Soluble Species at a Nonuniform Air–Ice Interface. ACS Earth and Space Chemistry, 2017, 1, 572-579.	2.7	17
44	Chemical Composition and Properties of the Liquid–Vapor Interface of Aqueous C1 to C4 Monofunctional Acid and Alcohol Solutions. Journal of Physical Chemistry A, 2016, 120, 9749-9758.	2.5	26
45	Vanadium oxide nanostructures on another oxide: The viewpoint from model catalysts studies. Coordination Chemistry Reviews, 2015, 301-302, 106-122.	18.8	50
46	TiO ₂ @CeO _{<i>x</i>} Core–Shell Nanoparticles as Artificial Enzymes with Peroxidase-Like Activity. ACS Applied Materials & Interfaces, 2014, 6, 20130-20136.	8.0	87
47	From Vanadia Nanoclusters to Ultrathin Films on TiO ₂ (110): Evolution of the Yield and Selectivity in the Ethanol Oxidation Reaction. ACS Catalysis, 2014, 4, 3715-3723.	11.2	23
48	Atomic Structure and Special Reactivity Toward Methanol Oxidation of Vanadia Nanoclusters on TiO ₂ (110). Journal of the American Chemical Society, 2013, 135, 17331-17338.	13.7	39