List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9423077/publications.pdf Version: 2024-02-01

MASAVIIKI HODIF

#	Article	IF	CITATIONS
1	Taxonomy of the order Mononegavirales: update 2016. Archives of Virology, 2016, 161, 2351-2360.	2.1	407
2	Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature, 2010, 463, 84-87.	27.8	404
3	Taxonomy of the order Mononegavirales: update 2019. Archives of Virology, 2019, 164, 1967-1980.	2.1	224
4	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
5	Taxonomy of the order Mononegavirales: update 2017. Archives of Virology, 2017, 162, 2493-2504.	2.1	173
6	Taxonomy of the order Mononegavirales: update 2018. Archives of Virology, 2018, 163, 2283-2294.	2.1	153
7	Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13175-13180.	7.1	122
8	Bornavirus Closely Associates and Segregates with Host Chromosomes to Ensure Persistent Intranuclear Infection. Cell Host and Microbe, 2012, 11, 492-503.	11.0	94
9	Comprehensive analysis of endogenous bornavirus-like elements in eukaryote genomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120499.	4.0	70
10	Taxonomy of the order Mononegavirales: second update 2018. Archives of Virology, 2019, 164, 1233-1244.	2.1	70
11	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
12	Molecular Chaperone BiP Interacts with Borna Disease Virus Glycoprotein at the Cell Surface. Journal of Virology, 2009, 83, 12622-12625.	3.4	60
13	Avian bornaviruses are widely distributed in canary birds (Serinus canaria f. domestica). Veterinary Microbiology, 2013, 165, 287-295.	1.9	55
14	Non-Retroviral Fossils in Vertebrate Genomes. Viruses, 2011, 3, 1836-1848.	3.3	48
15	Influenza A Virus-Induced Expression of a GalNAc Transferase, GALNT3, via MicroRNAs Is Required for Enhanced Viral Replication. Journal of Virology, 2016, 90, 1788-1801.	3.4	48
16	An RNA-dependent RNA polymerase gene in bat genomes derived from an ancient negative-strand RNA virus. Scientific Reports, 2016, 6, 25873.	3.3	35
17	Heat shock cognate protein 70 controls Borna disease virus replication via interaction with the viral non-structural protein X. Microbes and Infection, 2009, 11, 394-402.	1.9	31
18	Genetic and serological surveillance for non-primate hepacivirus in horses in Japan. Veterinary Microbiology, 2015, 179, 219-227.	1.9	31

#	Article	IF	CITATIONS
19	Identification of novel avian and mammalian deltaviruses provides new insights into deltavirus evolution. Virus Evolution, 2021, 7, veab003.	4.9	27
20	Exaptation of Bornavirus-Like Nucleoprotein Elements in Afrotherians. PLoS Pathogens, 2016, 12, e1005785.	4.7	26
21	100-My history of bornavirus infections hidden in vertebrate genomes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
22	Paleovirology of bornaviruses: What can be learned from molecular fossils of bornaviruses. Virus Research, 2019, 262, 2-9.	2.2	24
23	ICTV Virus Taxonomy Profile: Bornaviridae. Journal of General Virology, 2021, 102, .	2.9	24
24	Contribution of the interaction between the rabies virus P protein and I-kappa B kinase ϵ to the inhibition of type I IFN induction signalling. Journal of General Virology, 2016, 97, 316-326.	2.9	24
25	The biological significance of bornavirus-derived genes in mammals. Current Opinion in Virology, 2017, 25, 1-6.	5.4	22
26	Synergistic antiviral activity of ribavirin and interferon-α against parrot bornaviruses in avian cells. Journal of General Virology, 2016, 97, 2096-2103.	2.9	22
27	No Evidence for Natural Selection on Endogenous Borna-Like Nucleoprotein Elements after the Divergence of Old World and New World Monkeys. PLoS ONE, 2011, 6, e24403.	2.5	21
28	Detection of Avian bornavirus 5 RNA in <i>Eclectus roratus</i> â€ with feather picking disorder. Microbiology and Immunology, 2012, 56, 346-349.	1.4	21
29	Phylogenetic variations of highly pathogenic H5N6 avian influenza viruses isolated from wild birds in the Izumi plain, Japan, during the 2016–17 winter season. Transboundary and Emerging Diseases, 2019, 66, 797-806.	3.0	20
30	Hidden Viral Sequences in Public Sequencing Data and Warning for Future Emerging Diseases. MBio, 2021, 12, e0163821.	4.1	19
31	Upregulation of Insulin-Like Growth Factor Binding Protein 3 in Astrocytes of Transgenic Mice That Express Borna Disease Virus Phosphoprotein. Journal of Virology, 2011, 85, 4567-4571.	3.4	18
32	Evolutionarily Conserved Interaction between the Phosphoproteins and X Proteins of Bornaviruses from Different Vertebrate Species. PLoS ONE, 2012, 7, e51161.	2.5	18
33	Molecular epidemiology of avian bornavirus from pet birds in Japan. Virus Genes, 2013, 47, 173-177.	1.6	17
34	Possibility and Challenges of Conversion of Current Virus Species Names to Linnaean Binomials. Systematic Biology, 2016, 66, syw096.	5.6	17
35	Isolation and molecular characterization of porcine epidemic diarrhea viruses collected in Japan in 2014. Archives of Virology, 2016, 161, 2189-2195.	2.1	15
36	Origin of an endogenous bornavirus-like nucleoprotein element in thirteen-lined ground squirrels. Genes and Genetic Systems, 2014, 89, 143-148.	0.7	14

#	Article	IF	CITATIONS
37	Chiropteran influenza viruses: flu from bats or a relic from the past?. Current Opinion in Virology, 2016, 16, 114-119.	5.4	12
38	Virus-like insertions with sequence signatures similar to those of endogenous nonretroviral RNA viruses in the human genome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
39	Identification of a reptile lyssavirus in Anolis allogus provided novel insights into lyssavirus evolution. Virus Genes, 2021, 57, 40-49.	1.6	10
40	A Human Endogenous Bornavirus-Like Nucleoprotein Encodes a Mitochondrial Protein Associated with Cell Viability. Journal of Virology, 2021, 95, e0203020.	3.4	10
41	Borna disease virus phosphoprotein triggers the organization of viral inclusion bodies by liquid-liquid phase separation. International Journal of Biological Macromolecules, 2021, 192, 55-63.	7.5	9
42	Molecular epidemiological study of adenovirus infecting western lowland gorillas and humans in and around Moukalaba-Doudou National Park (Gabon). Virus Genes, 2016, 52, 671-678.	1.6	8
43	Genetic characterization of an avian H4N6 influenza virus isolated from the Izumi plain, Japan. Microbiology and Immunology, 2017, 61, 513-518.	1.4	8
44	BUD23–TRMT112 interacts with the L protein of Borna disease virus and mediates the chromosomal tethering of viral ribonucleoproteins. Microbiology and Immunology, 2021, 65, 492-504.	1.4	8
45	A comprehensive profiling of innate immune responses in <i>Eptesicus</i> bat cells. Microbiology and Immunology, 2022, 66, 97-112.	1.4	8
46	Isolation of avian bornaviruses from psittacine birds using QT6 quail cells in Japan. Journal of Veterinary Medical Science, 2016, 78, 305-308.	0.9	7
47	Identification and molecular characterization of novel primate bocaparvoviruses from wild western Iowland gorillas of Moukalaba-Doudou National Park, Gabon. Infection, Genetics and Evolution, 2017, 53, 30-37.	2.3	7
48	Systematic estimation of insertion dates of endogenous bornavirus-like elements in vesper bats. Journal of Veterinary Medical Science, 2018, 80, 1356-1363.	0.9	7
49	Identification of a distinct lineage of aviadenovirus from crane feces. Virus Genes, 2019, 55, 815-824.	1.6	7
50	Splicing-Dependent Subcellular Targeting of Borna Disease Virus Nucleoprotein Isoforms. Journal of Virology, 2019, 93, .	3.4	7
51	Persistent natural infection of a <i>Culex tritaeniorhynchus</i> cell line with a novel <i>Culex tritaeniorhynchus</i> rhabdovirus strain. Microbiology and Immunology, 2015, 59, 562-566.	1.4	6
52	Parrot bornavirus-2 and -4 RNA detected in wild bird samples in Japan are phylogenetically adjacent to those found in pet birds in Japan. Virus Genes, 2015, 51, 234-243.	1.6	6
53	Interactions among eukaryotes, retrotransposons and riboviruses: endogenous riboviral elements in eukaryotic genomes. Genes and Genetic Systems, 2019, 94, 253-267.	0.7	6
54	Sequence determination of a new parrot bornavirusâ€5 strain in Japan: implications of cladeâ€specific sequence diversity in the regions interacting with host factors. Microbiology and Immunology, 2016, 60, 437-441.	1.4	5

#	Article	IF	CITATIONS
55	Identification of a novel filovirus in a common lancehead (<i>Bothrops atrox</i> (Linnaeus,) Tj ETQq1	0,784314	4 ggBT /Over
56	Establishment and characterization of a cell line derived from <i>Eptesicus nilssonii</i> . Journal of Veterinary Medical Science, 2016, 78, 1727-1729.	0.9	4
57	Development of a Model of Porcine Epidemic Diarrhea in Microminipigs. Veterinary Pathology, 2019, 56, 711-714.	1.7	3
58	Evolutionary Selection of the Nuclear Localization Signal in the Viral Nucleoprotein Leads to Host Adaptation of the Genus Orthobornavirus. Viruses, 2020, 12, 1291.	3.3	3
59	The Borna disease virus (BoDV) 2 nucleoprotein is a conspecific protein that enhances BoDV-1 RNA-dependent RNA polymerase activity. Journal of Virology, 2021, 95, e0093621.	3.4	3
60	An endogenous bornavirusâ€like nucleoprotein in miniopterid bats retains the RNAâ€binding properties of the original viral protein. FEBS Letters, 2022, 596, 323-337.	2.8	3
61	Parrot bornavirus infection: correlation with neurological signs and feather picking?. Veterinary Record, 2019, 184, 473-475.	0.3	2
62	Isolation and whole-genome sequencing of a novel aviadenovirus from owls in Japan. Archives of Virology, 2022, 167, 829-838.	2.1	2
63	Generation of Human Bronchial Epithelial Cell Lines Expressing Inactive Mutants of GALNT3. Journal of Veterinary Medical Science, 2012, 74, 1493-1496.	0.9	1