
Zhaojiang Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9423056/publications.pdf Version: 2024-02-01

наоцалс Сио

#	Article	IF	CITATIONS
1	MAPK Signaling Pathway Alters Expression of Midgut ALP and ABCC Genes and Causes Resistance to Bacillus thuringiensis Cry1Ac Toxin in Diamondback Moth. PLoS Genetics, 2015, 11, e1005124.	3.5	178
2	Whitefly hijacks a plant detoxification gene that neutralizes plant toxins. Cell, 2021, 184, 1693-1705.e17.	28.9	161
3	MAPK-directed activation of the whitefly transcription factor <i>CREB</i> leads to P450-mediated imidacloprid resistance. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10246-10253.	7.1	135
4	Progress and Prospects of CRISPR/Cas Systems in Insects and Other Arthropods. Frontiers in Physiology, 2017, 8, 608.	2.8	126
5	Down-regulation of a novel ABC transporter gene (Pxwhite) is associated with Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.). Insect Biochemistry and Molecular Biology, 2015, 59, 30-40.	2.7	97
6	Midgut transcriptome response to a Cry toxin in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Gene, 2014, 533, 180-187.	2.2	82
7	CRISPR/Cas9-mediated knockout of both the PxABCC2 and PxABCC3 genes confers high-level resistance to Bacillus thuringiensis Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.). Insect Biochemistry and Molecular Biology, 2019, 107, 31-38.	2.7	82
8	MAPK-dependent hormonal signaling plasticity contributes to overcoming Bacillus thuringiensis toxin action in an insect host. Nature Communications, 2020, 11, 3003.	12.8	78
9	The novel ABC transporter ABCH1 is a potential target for RNAi-based insect pest control and resistance management. Scientific Reports, 2015, 5, 13728.	3.3	64
10	Tissue-Specific Transcriptome Profiling of <i>Plutella Xylostella</i> Third Instar Larval Midgut. International Journal of Biological Sciences, 2012, 8, 1142-1155.	6.4	52
11	Insect Transcription Factors: A Landscape of Their Structures and Biological Functions in Drosophila and beyond. International Journal of Molecular Sciences, 2018, 19, 3691.	4.1	37
12	The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host. PLoS Pathogens, 2021, 17, e1009917.	4.7	37
13	Construction and characterisation of near-isogenic <i>Plutella xylostella</i> (Lepidoptera:) Tj ETQq1 1 0.784314	rgBT /Ove	rlock 10 Tf 5
14	Reduced expression of the Pâ€glycoprotein gene <i>PxABCB1</i> is linked to resistance to <i>Bacillus thuringiensis</i> Cry1Ac toxin in <i>Plutella xylostella</i> (L.). Pest Management Science, 2020, 76, 712-720.	3.4	35
15	The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.). Journal of Invertebrate Pathology, 2015, 126, 21-30.	3.2	34
16	Epitranscriptomic regulation of insecticide resistance. Science Advances, 2021, 7, .	10.3	34
17	Lack of fitness costs and inheritance of resistance to <i>Bacillus thuringiensis</i> Cry1Ac toxin in a near-isogenic strain of <i>Plutella xylostella</i> (Lepidoptera: Plutellidae). Pest Management Science, 2016, 72, 289-297.	3.4	31
18	Proteomics-based identification of midgut proteins correlated with Cry1Ac resistance in Plutella xylostella (L.). Pesticide Biochemistry and Physiology, 2016, 132, 108-117.	3.6	27

Zhaojiang Guo

#	Article	IF	CITATIONS
19	A versatile contribution of both aminopeptidases N and ABC transporters to Bt Cry1Ac toxicity in the diamondback moth. BMC Biology, 2022, 20, 33.	3.8	26
20	Effects of Heat Shock on the Bradysia odoriphaga (Diptera: Sciaridae). Journal of Economic Entomology, 2017, 110, 1630-1638.	1.8	24
21	Annual analysis of fieldâ€evolved insecticide resistance in <scp><i>Bemisia tabaci</i></scp> across China. Pest Management Science, 2021, 77, 2990-3001.	3.4	24
22	MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression. PLoS Genetics, 2022, 18, e1010037.	3.5	23
23	Transcriptome profiling and functional analysis suggest that the constitutive overexpression of four cytochrome P450s confers resistance to abamectin in <i>Tetranychus urticae</i> from China. Pest Management Science, 2021, 77, 1204-1213.	3.4	22
24	Frequencies and mechanisms of pesticide resistance in <i>Tetranychus urticae</i> field populations in China. Insect Science, 2022, 29, 827-839.	3.0	22
25	Analysis of the antennal transcriptome and odorant-binding protein expression profiles of the parasitoid wasp Encarsia formosa. Genomics, 2020, 112, 2291-2301.	2.9	20
26	Tissue-specific Proteogenomic Analysis of Plutella xylostella Larval Midgut Using a Multialgorithm Pipeline. Molecular and Cellular Proteomics, 2016, 15, 1791-1807.	3.8	19
27	Reduced Expression of a Novel Midgut Trypsin Gene Involved in Protoxin Activation Correlates with Cry1Ac Resistance in a Laboratory-Selected Strain of Plutella xylostella (L.). Toxins, 2020, 12, 76.	3.4	19
28	Comprehensive analysis of Cry1Ac protoxin activation mediated by midgut proteases in susceptible and resistant Plutella xylostella (L.). Pesticide Biochemistry and Physiology, 2020, 163, 23-30.	3.6	17
29	MAPK-Activated Transcription Factor PxJun Suppresses <i>PxABCB1</i> Expression and Confers Resistance to <i>Bacillus thuringiensis</i> Cry1Ac Toxin in <i>Plutella xylostella</i> (L.). Applied and Environmental Microbiology, 2021, 87, e0046621.	3.1	16
30	Genome-Wide Characterization and Expression Profiling of Sugar Transporter Family in the Whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Frontiers in Physiology, 2017, 8, 322.	2.8	15
31	Expression of cadherin, aminopeptidase N and alkaline phosphatase genes in Cry1Acâ€susceptible and Cry1Acâ€resistant strains of <i>Plutella xylostella</i> (L.). Journal of Applied Entomology, 2012, 136, 539-548.	1.8	14
32	Fused: a promising molecular target for an RNAi-based strategy to manage Bt resistance in Plutella xylostella (L.). Journal of Pest Science, 2022, 95, 101-114.	3.7	14
33	Genome-Wide Analysis of Carboxylesterases (COEs) in the Whitefly, Bemisia tabaci (Gennadius). International Journal of Molecular Sciences, 2019, 20, 4973.	4.1	13
34	Genome-wide Identification and Expression Analysis of Amino Acid Transporters in the Whitefly, <i>Bemisia tabaci </i> (Gennadius). International Journal of Biological Sciences, 2017, 13, 735-747.	6.4	11
35	Characterization of immune-related PGRP gene expression and phenoloxidase activity in Cry1Ac-susceptible and -resistant Plutella xylostella (L.). Pesticide Biochemistry and Physiology, 2019, 160, 79-86.	3.6	11
36	A cis-Acting Mutation in the PxABCG1 Promoter Is Associated with Cry1Ac Resistance in Plutella xylostella (L.). International Journal of Molecular Sciences, 2021, 22, 6106.	4.1	11

Zhaojiang Guo

#	Article	IF	CITATIONS
37	Silencing of the <scp><i>BtTPS</i></scp> genes by transgenic plantâ€mediated <scp>RNAi</scp> to control <i>Bemisia tabaci</i> <scp>MED</scp> . Pest Management Science, 2022, 78, 1128-1137.	3.4	11
38	MAP4K4 controlled transcription factor POUM1 regulates PxABCG1 expression influencing Cry1Ac resistance in Plutella xylostella (L.). Pesticide Biochemistry and Physiology, 2022, 182, 105053.	3.6	11
39	Two Deoxythymidine Triphosphate Synthesis-Related Genes Regulate Obligate Symbiont Density and Reproduction in the Whitefly Bemisia tabaci MED. Frontiers in Physiology, 2020, 11, 574749.	2.8	3
40	Molecular characterization of a novel partitivirus and a fusarivirus coinfecting the fungus Nigrospora sphaerica. Archives of Virology, 2021, 166, 2325-2331.	2.1	2
41	Ca ²⁺ signal contributing to jasmonic acidâ€induced direct and indirect defense against the whitefly <i>Bemisia tabaci</i> in tomato plants. Entomologia Experimentalis Et Applicata, 2021, 169, 848-858.	1.4	1
42	The Thermoperiod Alters Boper Gene Expression and Thereby Regulates the Eclosion Rhythm of Bradysia odoriphaga (Diptera: Sciaridae). Environmental Entomology, 2021, 50, 1241-1247.	1.4	1
43	Antimicrobial peptides are not involved in Plutella xylostella resistance to Cry1Ac. Journal of Applied Entomology, 2021, 145, 358-368.	1.8	0