Jin Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9422608/publications.pdf

Version: 2024-02-01

74	2,797	30	51
papers	citations	h-index	g-index
84	84	84	2619
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Simultaneous detection of trace Hg2+ and Ag+ by SERS aptasensor based on a novel cascade amplification in environmental water. Chemical Engineering Journal, 2022, 435, 133879.	6.6	29
2	Ruthenium-catalyzed room-temperature coupling of \hat{l} ±-keto sulfoxonium ylides and cyclopropanols for \hat{l} -diketone synthesis. Chemical Communications, 2021, 57, 7386-7389.	2.2	8
3	Cobalt-Catalyzed, Directed Intermolecular C–H Bond Functionalization for Multiheteroatom Heterocycle Synthesis: The Case of Benzotriazine. Organic Letters, 2021, 23, 5652-5657.	2.4	8
4	Ultrasensitive detection of trace Hg2+ by SERS aptasensor based on dual recycling amplification in water environment. Journal of Hazardous Materials, 2021, 416, 126251.	6.5	40
5	Rhodium-Catalyzed Redox-Neutral Cross-Dehydrogenative Alkenylation of Arylhydrazines for Polymer Synthesis. Macromolecules, 2021, 54, 9739-9749.	2.2	3
6	Rh(III)-catalyzed synthesis of isoquinolines using the N-Cl bond of N-chloroimines as an internal oxidant. Tetrahedron Letters, 2020, 61, 151771.	0.7	11
7	Visible-Light-Mediated Intermolecular Radical Conjugate Addition for the Construction of Vicinal Quaternary Carbon Centers. Organic Letters, 2020, 22, 5401-5406.	2.4	29
8	Rh(III)-Catalyzed Coupling of $\langle i \rangle N \langle i \rangle$ -Chloroimines with $\hat{l}\pm$ -Diazo- $\hat{l}\pm$ -phosphonoacetates for the Synthesis of $2\langle i \rangle H \langle i \rangle$ -Isoindoles. Organic Letters, 2019, 21, 6860-6863.	2.4	16
9	Spiro[indene-1,4′-oxa-zolidinones] Synthesis via Rh(III)-Catalyzed Coupling of 4-Phenyl-1,3-oxazol-2(3H)-ones with Alkynes: A Redox-Neutral Approach. Journal of Organic Chemistry, 2019, 84, 11945-11957.	1.7	6
10	Acyl Radicals from Benzothiazolines: Synthons for Alkylation, Alkenylation, and Alkynylation Reactions. Organic Letters, 2019, 21, 5462-5466.	2.4	46
11	Rh(III)-catalyzed N-nitroso-directed C-H olefination polymerization. Polymer, 2019, 172, 152-159.	1.8	5
12	Large Chiral Nanotubes Self-Assembled by DNA Bricks. Journal of the American Chemical Society, 2019, 141, 19524-19528.	6.6	13
13	NiHâ€Catalyzed Reductive Relay Hydroalkylation: A Strategy for the Remote C(sp ³)â^'H Alkylation of Alkenes. Angewandte Chemie, 2018, 130, 4122-4126.	1.6	46
14	NiH atalyzed Reductive Relay Hydroalkylation: A Strategy for the Remote C(sp ³)â^'H Alkylation of Alkenes. Angewandte Chemie - International Edition, 2018, 57, 4058-4062.	7.2	159
15	Synthesis of 2,5-disubstituted oxazoles <i>via</i> cobalt(<scp>iii</scp>)-catalyzed cross-coupling of <i>N</i> -pivaloyloxyamides and alkynes. Chemical Communications, 2018, 54, 1197-1200.	2.2	20
16	Co(<scp>iii</scp>)-Catalyzed <i>N</i> -chloroamide-directed Câ€"H activation for 3,4-dihydroisoquinolone synthesis. Organic Chemistry Frontiers, 2018, 5, 994-997.	2.3	32
17	Rh(III)-Catalyzed Enaminone-Directed C–H Coupling with α-Diazo-α-phosphonoacetate for Reactivity Discovery: Fluoride-Mediated Dephosphonation for C–C Coupling Reactions. Organic Letters, 2018, 20, 3819-3823.	2.4	28
18	Rh(III)-Catalyzed Enaminone-Directed Alkenyl C–H Activation for the Synthesis of Salicylaldehydes. Organic Letters, 2018, 20, 3996-3999.	2.4	38

#	Article	IF	CITATIONS
19	Co(III)-Catalyzed Enaminone-Directed C–H Amidation for Quinolone Synthesis. Organic Letters, 2017, 19, 2418-2421.	2.4	83
20	Associative Covalent Relay: An Oxadiazolone Strategy for Rhodium(III) atalyzed Synthesis of Primary Pyridinylamines. Angewandte Chemie, 2017, 129, 5306-5310.	1.6	2
21	Cobalt(III)-Catalyzed Oxadiazole-Directed C–H Activation for the Synthesis of 1-Aminoisoquinolines. Organic Letters, 2017, 19, 2885-2888.	2.4	56
22	Synthesis of 2,3-Benzodiazepines via Rh(III)-Catalyzed C–H Functionalization of <i>N</i> -Boc Hydrazones with Diazoketoesters. Organic Letters, 2017, 19, 3640-3643.	2.4	37
23	Associative Covalent Relay: An Oxadiazolone Strategy for Rhodium(III) atalyzed Synthesis of Primary Pyridinylamines. Angewandte Chemie - International Edition, 2017, 56, 5222-5226.	7.2	35
24	Rhodium(III)-Catalyzed Oxadiazole-Directed Alkenyl C–H Activation for Synthetic Access to 2-Acylamino and 2-Amino Pyridines. Journal of Organic Chemistry, 2017, 82, 9978-9987.	1.7	10
25	Direct Access to Cobaltacycles via C–H Activation: <i>N</i> -Chloroamide-Enabled Room-Temperature Synthesis of Heterocycles. Organic Letters, 2017, 19, 5348-5351.	2.4	91
26	A C–H Activation-Based Strategy for <i>N</i> -Amino Azaheterocycle Synthesis. Organic Letters, 2017, 19, 4359-4362.	2.4	36
27	Enaminones as Synthons for a Directed Câ^'H Functionalization: Rh ^{III} atalyzed Synthesis of Naphthalenes. Angewandte Chemie - International Edition, 2016, 55, 9384-9388.	7.2	154
28	Enaminones as Synthons for a Directed Câ^'H Functionalization: Rh ^{III} atalyzed Synthesis of Naphthalenes. Angewandte Chemie, 2016, 128, 9530-9534.	1.6	20
29	Quinazoline Synthesis via Rh(III)-Catalyzed Intermolecular C–H Functionalization of Benzimidates with Dioxazolones. Organic Letters, 2016, 18, 2062-2065.	2.4	124
30	Synthesis of isoquinolines via Rh-catalyzed C–H activation/C–N cyclization with diazodiesters or diazoketoesters as a C ₂ source. Organic and Biomolecular Chemistry, 2016, 14, 4848-4852.	1.5	42
31	A Versatile, Traceless C–H Activation-Based Approach for the Synthesis of Heterocycles. Organic Letters, 2016, 18, 2427-2430.	2.4	58
32	Oxadiazolone-Enabled Synthesis of Primary Azaaromatic Amines. Organic Letters, 2016, 18, 5412-5415.	2.4	69
33	Access to the Cinnoline Scaffold via Rhodium-Catalyzed Intermolecular Cyclization under Mild Conditions. Organic Letters, 2016, 18, 4510-4513.	2.4	43
34	Cp*Co(iii)-catalyzed, N–N bond-based redox-neutral synthesis of isoquinolines. Organic Chemistry Frontiers, 2016, 3, 1281-1285.	2.3	50
35	Ruthenium(II)â€Catalyzed Traceless Câ^'H Functionalization Using an Nâ^'N Bond as an Internal Oxidant. Chemistry - A European Journal, 2016, 22, 14508-14512.	1.7	27
36	Co(III)-Catalyzed, Internal and Terminal Alkyne-Compatible Synthesis of Indoles. Organic Letters, 2016, 18, 3806-3809.	2.4	77

#	Article	IF	Citations
37	Bidentate Directing-Enabled, Traceless Heterocycle Synthesis: Cobalt-Catalyzed Access to Isoquinolines. Organic Letters, 2016, 18, 5632-5635.	2.4	58
38	A Decentralized Approach to the Formulation of Hypotheses: A Hierarchical Structural Model for a Prion Self-Assembled System. Scientific Reports, 2016, 6, 30633.	1.6	0
39	C–H Activation-Based Traceless Synthesis via Electrophilic Removal of a Directing Group. Rhodium(III)-Catalyzed Entry into Indoles from <i>N</i> -Nitroso and α-Diazo-β-keto Compounds. Organic Letters, 2016, 18, 1178-1181.	2.4	110
40	DNA polygonal cavities with tunable shapes and sizes. Chemical Communications, 2015, 51, 16247-16250.	2.2	8
41	Primer Extension Reaction Assays for Incorporation of Deoxynucleotide Analogue into DNA. Chinese Journal of Chemistry, 2015, 33, 192-198.	2.6	O
42	Multiplexed DNA detection based on positional encoding/decoding with self-assembled DNA nanostructures. Chemical Science, 2015, 6, 930-934.	3.7	15
43	Rhodium(III)-Catalyzed Directed <i>ortho</i> -Câ€"H Bond Functionalization of Aromatic Ketazines via Câ€"S and Câ€"C Coupling. Journal of Organic Chemistry, 2015, 80, 10457-10463.	1.7	33
44	Salt-enabled visual detection of DNA. Chemical Communications, 2014, 50, 15744-15747.	2.2	0
45	Rhodium(III)â€Catalyzed <i>N</i> â€Nitrosoâ€Directed CH Addition to Ethyl 2â€Oxoacetate for Cycloaddition/Fragmentation Synthesis of Indazoles. Chemistry - A European Journal, 2014, 20, 14245-14249.	1.7	50
46	Room temperature polymerization of norbornene with a hydride-bridged dinuclear ruthenium complex system. Journal of Molecular Catalysis A, 2014, 394, 198-204.	4.8	5
47	An intermolecular C–H functionalization method for the synthesis of 3-hydroxy-2-oxindoles. Organic and Biomolecular Chemistry, 2014, 12, 8390-8393.	1.5	4
48	Water-Enabled Visual Detection of DNA. Journal of the American Chemical Society, 2013, 135, 16268-16271.	6.6	12
49	DNA binding and reactivity assays based on in-frame protein expression. Chemical Science, 2013, 4, 633-641.	3.7	1
50	Rhodium(III)-Catalyzed Indole Synthesis Using N–N Bond as an Internal Oxidant. Journal of the American Chemical Society, 2013, 135, 16625-16631.	6.6	327
51	Rhodium(III)-Catalyzed <i>N</i> -Nitroso-Directed C–H Olefination of Arenes. High-Yield, Versatile Coupling under Mild Conditions. Journal of the American Chemical Society, 2013, 135, 468-473.	6.6	223
52	DNA Detection Based on Fluorogenic Nanospheres. Angewandte Chemie - International Edition, 2012, 51, 11006-11009.	7.2	5
53	Ultrafast Kinetic DNA Hybridization Assay Based on the Visualization of Threshold Turbidity. Analytical Chemistry, 2012, 84, 3500-3506.	3.2	3
54	Low temperature depolymerization from a copper-based aqueous vinyl polymerization system. Polymer, 2012, 53, 5010-5015.	1.8	13

#	Article	IF	CITATIONS
55	A Coordination Complex System for Generic, Ultrafast, and Sensitive Multimode Fluorescent Staining of Biomolecules. Inorganic Chemistry, 2012, 51, 188-192.	1.9	4
56	Research Progress in Application of Nanomaterial for Deoxyribonucleic Acid Detection. Chinese Journal of Analytical Chemistry, 2012, 39, 146-154.	0.9	0
57	DNA diagnostics with a bacterial reporter probe. Chemical Communications, 2011, 47, 7470.	2.2	8
58	Diversified Nanoparticle Assembly Pathways: Materials Architecture Control Beyond the Amphiphilicity Paradigm. Journal of Physical Chemistry B, 2011, 115, 14416-14423.	1.2	1
59	Polymerization of 4-vinylpyridine and N,N-dimethylacrylamide using a system without organic initiator. Polymer Chemistry, 2011, 2, 2356.	1.9	3
60	Research Progress in Application of Nanomaterials for Deoxyribonucleic Acid Detection. Chinese Journal of Analytical Chemistry, 2011, 39, 146-154.	0.9	10
61	Interfacial Assembly of Nanoparticles with Fluorous-Tagged Organic Molecules. Journal of Physical Chemistry C, 2010, 114, 13546-13550.	1.5	5
62	Biomineralization-Assisted Ultrasensitive Detection of DNA. Journal of the American Chemical Society, 2010, 132, 6932-6934.	6.6	35
63	Metalâ^'Organic Hybrid Particles with Variable Sub-Stoichiometric Metal Contents. Chemistry of Materials, 2010, 22, 3310-3312.	3.2	5
64	Expressed Peptide Assay for DNA Detection. Journal of the American Chemical Society, 2010, 132, 4161-4168.	6.6	32
65	Ultra-Sensitive Fluorescent Sensor for Hg ²⁺ Based on a Donorâ^'Acceptorâ^'Donor Framework. Journal of Physical Chemistry A, 2010, 114, 13370-13375.	1.1	26
66	Controlled Assembly of Au, Ag, and Pt Nanoparticles with Chitosan. Chemistry - A European Journal, 2009, 15, 5935-5941.	1.7	18
67	Nanoparticleâ€Based, Fluorousâ€Tagâ€Driven DNA Detection. Angewandte Chemie - International Edition, 2009, 48, 9503-9506.	7.2	39
68	Synthesis and structural characterization of copper(II), cadmium(II) and zinc(II) complexes with 4,5-diazaspirobifluorene and bis-9-biphenyl-4,5-diazafluorenyl peroxide. Polyhedron, 2009, 28, 445-452.	1.0	6
69	Metal Ion-Sensing Polymer in the Weak Binding Monomer Regime. Journal of Physical Chemistry B, 2009, 113, 8214-8217.	1.2	22
70	A Mild Route to the Whittling of Gold Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 12950-12953.	1.5	4
71	Monolayerâ€Barcoded Nanoparticles for Onâ€Chip DNA Hybridization Assay. Angewandte Chemie - International Edition, 2008, 47, 5009-5012.	7.2	64
72	A One-Pot Method to Prepare Gold Nanoparticle Chains with Chitosan. Journal of Physical Chemistry C, 2008, 112, 319-323.	1.5	63

#	Article	IF	CITATIONS
73	A Solvent-Driven Organogel Shrinkage. Chemistry of Materials, 2007, 19, 2392-2394.	3.2	16
74	4,5-Diaza-9,9′-spirobifluorene. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3304-o3304.	0.2	3