Rodney J Dilley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9422589/publications.pdf

Version: 2024-02-01

76196 79541 6,040 134 40 73 citations h-index g-index papers 135 135 135 7367 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bioprinting silk fibroin using two-photon lithography enables control over the physico-chemical material properties and cellular response. Bioprinting, 2022, 25, e00183.	2.9	15
2	Development of 3D bioprinted GelMA-alginate hydrogels with tunable mechanical properties. Bioprinting, 2021, 21, e00105.	2.9	48
3	Hearing aid acquisition and ownership: what can we learn from online consumer reviews?. International Journal of Audiology, 2021, 60, 917-926.	0.9	7
4	Hearing Aid Consumer Reviews: A Linguistic Analysis in Relation to Benefit and Satisfaction Ratings. American Journal of Audiology, 2021, 30, 761-768.	0.5	2
5	Hearing Aid Review Appointments: Attendance and Effectiveness. American Journal of Audiology, 2021, 30, 1-9.	0.5	2
6	Usher Syndrome: Genetics and Molecular Links of Hearing Loss and Directions for Therapy. Frontiers in Genetics, 2020, 11, 565216.	1.1	24
7	Protein Paper from Exfoliated Eri Silk Nanofibers. Biomacromolecules, 2020, 21, 1303-1314.	2.6	12
8	Investigating the prevalence and impact of device-related problems associated with hearing aid use. International Journal of Audiology, 2020, 59, 615-623.	0.9	11
9	Enhancing Resistance of Silk Fibroin Material to Enzymatic Degradation by Cross-Linking Both Crystalline and Amorphous Domains. ACS Biomaterials Science and Engineering, 2020, 6, 2459-2468.	2.6	14
10	Tunable Biodegradable Silk-Based Memory Foams with Controlled Release of Antibiotics. ACS Applied Bio Materials, 2020, 3, 2466-2472.	2.3	16
11	How Do Hearing Aid Owners Respond to Hearing Aid Problems?. Ear and Hearing, 2019, 40, 77-87.	1.0	15
12	Isolation of Epidermal Progenitor Cells from Rat Tympanic Membrane. Methods in Molecular Biology, 2019, 2029, 247-255.	0.4	5
13	Silk particles, microfibres and nanofibres: A comparative study of their functions in 3D printing hydrogel scaffolds. Materials Science and Engineering C, 2019, 103, 109784.	3.8	33
14	Generation of two induced pluripotent stem cell lines from a patient with compound heterozygous mutations in the USH2A gene. Stem Cell Research, 2019, 36, 101420.	0.3	5
15	Reactions to Gudair \hat{A}^{\otimes} vaccination identified in sheep used for biomedical research. Australian Veterinary Journal, 2019, 97, 56-60.	0.5	2
16	Investigating the Knowledge, Skills, and Tasks Required for Hearing Aid Management: Perspectives of Clinicians and Hearing Aid Owners. American Journal of Audiology, 2018, 27, 67-84.	0.5	24
17	Transcription and microRNA Profiling of Cultured Human Tympanic Membrane Epidermal Keratinocytes. JARO - Journal of the Association for Research in Otolaryngology, 2018, 19, 243-260.	0.9	3
18	The Influence of Breast Tumour-Derived Factors and Wnt Antagonism on the Transformation of Adipose-Derived Mesenchymal Stem Cells into Tumour-Associated Fibroblasts. Cancer Microenvironment, 2018, 11, 71-84.	3.1	11

#	Article	IF	CITATIONS
19	A novel microsurgical rodent model for the transplantation of engineered cardiac muscle flap. Microsurgery, 2018, 38, 544-552.	0.6	5
20	Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79, 150-157.	1.5	262
21	The inhibitory influence of adipose tissue-derived mesenchymal stem cell environment and Wnt antagonism on breast tumour cell lines. International Journal of Biochemistry and Cell Biology, 2018, 95, 63-72.	1.2	12
22	Tympanic Membrane Derived Stem Cell-Like Cultures for Tissue Regeneration. Stem Cells and Development, 2018, 27, 649-657.	1.1	15
23	Characterisation of hyaluronic acid methylcellulose hydrogels for 3D bioprinting. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 389-399.	1.5	125
24	Exploring Hearing Aid Problems: Perspectives of Hearing Aid Owners and Clinicians. Ear and Hearing, 2018, 39, 172-187.	1.0	48
25	Facile and versatile solid state surface modification of silk fibroin membranes using click chemistry. Journal of Materials Chemistry B, 2018, 6, 8037-8042.	2.9	13
26	Novel non-angiogenic role for mesenchymal stem cell-derived vascular endothelial growth factor on keratinocytes during wound healing. Cytokine and Growth Factor Reviews, 2018, 44, 69-79.	3.2	40
27	Factors Associated With Self-Reported Hearing Aid Management Skills and Knowledge. American Journal of Audiology, 2018, 27, 604-613.	0.5	8
28	Evaluating Hearing Aid Management: Development of the Hearing Aid Skills and Knowledge Inventory (HASKI). American Journal of Audiology, 2018, 27, 333-348.	0.5	10
29	Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review. Otolaryngology - Head and Neck Surgery, 2018, 159, 424-438.	1.1	44
30	3D Printing of Silk Particle-Reinforced Chitosan Hydrogel Structures and Their Properties. ACS Biomaterials Science and Engineering, 2018, 4, 3036-3046.	2.6	78
31	Paracrine Activity from Adipose-Derived Stem Cells on In Vitro Wound Healing in Human Tympanic Membrane Keratinocytes. Stem Cells and Development, 2017, 26, 405-418.	1.1	39
32	Glycerol-plasticised silk membranes made using formic acid are ductile, transparent and degradation-resistant. Materials Science and Engineering C, 2017, 80, 165-173.	3.8	23
33	Rat model of chronic tympanic membrane perforation: A longitudinal histological evaluation of underlying mechanisms. International Journal of Pediatric Otorhinolaryngology, 2017, 93, 88-96.	0.4	10
34	Isolation and Culture of Adipose-Derived Stromal Cells from Subcutaneous Fat. Methods in Molecular Biology, 2017, 1627, 193-203.	0.4	4
35	Are hearing aid owners able to identify and self-report handling difficulties? A pilot study. International Journal of Audiology, 2017, 56, 887-893.	0.9	11
36	In response to the letter to the editor regarding: Rat model of chronic tympanic membrane perforation: Ventilation tube with mitomycin C and dexamethasone. International Journal of Pediatric Otorhinolaryngology, 2017, 100, 256-257.	0.4	O

#	Article	IF	CITATIONS
37	Gene Expression Networks in the Murine Pulmonary Myocardium Provide Insight into the Pathobiology of Atrial Fibrillation. G3: Genes, Genomes, Genetics, 2017, 7, 2999-3017.	0.8	8
38	Tympanic membrane organ culture using cell culture well inserts engrafted with tympanic membrane tissue explants. BioTechniques, 2017, 62, 109-114.	0.8	13
39	Addressing the cost of infractions in the online literature and databases. PLoS ONE, 2017, 12, e0188761.	1.1	O
40	In response to <i>Tympanic membrane repair using silk fibroin and a cellular collagen scaffolds</i> Laryngoscope, 2016, 126, E422.	1.1	2
41	Comparative acoustic performance and mechanical properties of silk membranes for the repair of chronic tympanic membrane perforations. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64, 65-74.	1.5	20
42	Hair transplantation in mice: Challenges and solutions. Wound Repair and Regeneration, 2016, 24, 679-685.	1.5	3
43	Rat model of chronic tympanic membrane perforation: Ventilation tube with mitomycin C and dexamethasone. International Journal of Pediatric Otorhinolaryngology, 2016, 80, 61-68.	0.4	16
44	The impact of degumming conditions on the properties of silk films for biomedical applications. Textile Reseach Journal, 2016, 86, 275-287.	1.1	30
45	Abstract 4629: The influence of adipose tissue-derived mesenchymal stem cell environment and WNT antagonism on breast tumour cells. , 2016, , .		0
46	Tissue engineering of the tympanic membrane using electrospun PEOT/PBT copolymer scaffolds: A morphological in vitro study. Hearing, Balance and Communication, 2015, 13, 133-147.	0.1	25
47	Bioengineering and Stem Cell Technology in the Treatment of Congenital Heart Disease. Journal of Clinical Medicine, 2015, 4, 768-781.	1.0	3
48	Wnt Antagonist Secreted Frizzled-Related Protein 4 Upregulates Adipogenic Differentiation in Human Adipose Tissue-Derived Mesenchymal Stem Cells. PLoS ONE, 2015, 10, e0118005.	1.1	25
49	Searching for a rat model of chronic tympanic membrane perforation: Healing delayed by mitomycin C/dexamethasone but not paper implantation or iterative myringotomy. International Journal of Pediatric Otorhinolaryngology, 2015, 79, 1240-1247.	0.4	18
50	Prospects for clinical use of reprogrammed cells for autologous treatment of macular degeneration. Fibrogenesis and Tissue Repair, 2015, 8, 9.	3.4	21
51	Multi-lineage differentiation of mesenchymal stem cells – To Wnt, or not Wnt. International Journal of Biochemistry and Cell Biology, 2015, 68, 139-147.	1.2	85
52	Animal models of chronic tympanic membrane perforation: A â€time-out' to review evidence and standardize design. International Journal of Pediatric Otorhinolaryngology, 2014, 78, 2048-2055.	0.4	36
53	Enhancing Human Cardiomyocyte Differentiation from Induced Pluripotent Stem Cells with Trichostatin A. Methods in Molecular Biology, 2014, 1357, 415-421.	0.4	6
54	Vascularisation to improve translational potential of tissue engineering systems for cardiac repair. International Journal of Biochemistry and Cell Biology, 2014, 56, 38-46.	1.2	30

#	Article	lF	Citations
55	Ischemic preconditioning for cell-based therapy and tissue engineering. , 2014, 142, 141-153.		29
56	The biocompatibility of silk fibroin and acellular collagen scaffolds for tissue engineering in the ear. Biomedical Materials (Bristol), 2014, 9, 015015.	1.7	40
57	Animal models of chronic tympanic membrane perforation: in response to plasminogen initiates and potentiates the healing of acute and chronic tympanic membrane perforations in mice. Clinical and Translational Medicine, 2014, 3, 5.	1.7	16
58	The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation. Journal of Clinical Medicine, 2014, 3, 373-387.	1.0	8
59	Scaffolds for Tympanic Membrane Regeneration in Rats. Tissue Engineering - Part A, 2013, 19, 657-668.	1.6	54
60	Adipose-Derived Stem Cells Promote Angiogenesis and Tissue Formation for <i>In Vivo</i> Tissue Engineering. Tissue Engineering - Part A, 2013, 19, 1327-1335.	1.6	94
61	Tympanic membrane repair using silk fibroin and acellular collagen scaffolds. Laryngoscope, 2013, 123, 1976-1982.	1.1	42
62	TGF- \hat{l} ±/HA complex promotes tympanic membrane keratinocyte migration and proliferation via ErbB1 receptor. Experimental Cell Research, 2013, 319, 790-799.	1.2	9
63	Trichostatin A Enhances Differentiation of Human Induced Pluripotent Stem Cells to Cardiogenic Cells for Cardiac Tissue Engineering. Stem Cells Translational Medicine, 2013, 2, 715-725.	1.6	47
64	Tissue Engineering of the Tympanic Membrane. Tissue Engineering - Part B: Reviews, 2013, 19, 116-132.	2.5	73
65	Hypoxic Conditioning Enhances the Angiogenic Paracrine Activity of Human Adipose-Derived Stem Cells. Stem Cells and Development, 2013, 22, 1614-1623.	1.1	93
66	Enrichment of neonatal rat cardiomyocytes in primary culture facilitates long-term maintenance of contractility in vitro. American Journal of Physiology - Cell Physiology, 2012, 303, C1220-C1228.	2.1	26
67	Transplantation of Engineered Cardiac Muscle Flaps in Syngeneic Rats. Tissue Engineering - Part A, 2012, 18, 1992-1999.	1.6	49
68	Hypoxic Preconditioning Enhances Survival of Human Adipose-Derived Stem Cells and Conditions Endothelial Cells In Vitro. Stem Cells and Development, 2012, 21, 1887-1896.	1.1	111
69	In vivo tissue engineering chamber supports human induced pluripotent stem cell survival and rapid differentiation. Biochemical and Biophysical Research Communications, 2012, 422, 75-79.	1.0	18
70	Ischemic Preconditioning Promotes Intrinsic Vascularization and Enhances Survival of Implanted Cells in an <i>In Vivo</i> Tissue Engineering Model. Tissue Engineering - Part A, 2012, 18, 2210-2219.	1.6	20
71	Generating Human Cardiac Muscle Cells from Adipose-Derived Stem Cells. , 2012, , 269-275.		0
72	Comparative Analysis of Paracrine Factor Expression in Human Adult Mesenchymal Stem Cells Derived from Bone Marrow, Adipose, and Dermal Tissue. Stem Cells and Development, 2012, 21, 2189-2203.	1.1	347

#	Article	IF	Citations
73	Engineering cardiac tissue in vivo from human adipose-derived stem cells. Biomaterials, 2010, 31, 2236-2242.	5.7	70
74	Differentiation of human adiposeâ€derived stem cells into beating cardiomyocytes. Journal of Cellular and Molecular Medicine, 2010, 14, 878-889.	1.6	168
75	Strategies in cardiac tissue engineering. ANZ Journal of Surgery, 2010, 80, 683-693.	0.3	31
76	Prostacyclin receptor suppresses cardiac fibrosis: Role of CREB phosphorylation. Journal of Molecular and Cellular Cardiology, 2010, 49, 176-185.	0.9	47
77	CYT997: a novel orally active tubulin polymerization inhibitor with potent cytotoxic and vascular disrupting activity <i>in vitro</i> and <i>in vivo</i> . Molecular Cancer Therapeutics, 2009, 8, 3036-3045.	1.9	29
78	In Vivo Cardiac Tissue Engineering in Vascularised Chambers. Heart Lung and Circulation, 2008, 17, S225.	0.2	0
79	Another piece of cell biology in the puzzle of inflammation, glucose and diabetic vascular disease. Journal of Hypertension, 2008, 26, 396-398.	0.3	1
80	Adventitial application of the NADPH oxidase inhibitor apocynin in vivo reduces neointima formation and endothelial dysfunction in rabbits. Cardiovascular Research, 2007, 75, 710-718.	1.8	35
81	Altered Activity of $11\hat{l}^2$ -Hydroxysteroid Dehydrogenase Types 1 and 2 in Skeletal Muscle Confers Metabolic Protection in Subjects with Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 3314-3320.	1.8	41
82	Cardiac Tissue Engineering in an In Vivo Vascularized Chamber. Circulation, 2007, 115, 353-360.	1.6	216
83	$11\hat{l}^2$ Hydroxysteroid dehydrogenase type $\hat{A}1$ is expressed and is biologically active in human skeletal muscle. Clinical Endocrinology, 2006, 65, 800-805.	1.2	25
84	Glycated and carboxy-methylated proteins do not directly activate human vascular smooth muscle cells. Kidney International, 2005, 68, 2756-2765.	2.6	18
85	Experimental vein grafts in the rat: Re-endothelialization and permeability to albumin. British Journal of Surgery, 2005, 70, 7-12.	0.1	28
86	Sex Steroids Modulate Human Aortic Smooth Muscle Cell Matrix Protein Deposition and Matrix Metalloproteinase Expression. Hypertension, 2005, 46, 1129-1134.	1.3	153
87	Diabetes induces Na/H exchange activity and hypertrophy of rat mesenteric but not basilar arteries. Diabetes Research and Clinical Practice, 2005, 70, 201-208.	1.1	8
88	Altered Epithelial Cell Proportions in the Fetal Lung of Glucocorticoid Receptor Null Mice. American Journal of Respiratory Cell and Molecular Biology, 2004, 30, 613-619.	1.4	79
89	Endogenous Estrogen Deficiency Reduces Proliferation and Enhances Apoptosis-Related Death in Vascular Smooth Muscle Cells. Circulation, 2004, 109, 537-543.	1.6	56
90	Fenofibrate modifies human vascular smooth muscle proteoglycans and reduces lipoprotein binding. Diabetologia, 2004, 47, 2105-2113.	2.9	33

#	Article	IF	Citations
91	A novel inhibitory role for CREG-mediated signalling in cardiac hypertrophy?. Journal of Hypertension, 2004, 22, 1469-1471.	0.3	O
92	Cardiovascular hypertrophy in one-kidney, one-clip renal hypertension is resistant to heparin. Journal of Hypertension, 2004, 22, 767-774.	0.3	1
93	High glucose potentiates mitogenic responses of cultured ovine coronary smooth muscle cells to platelet derived growth factor and transforming growth factor- \hat{l}^2 1. Diabetes Research and Clinical Practice, 2003, 59, 93-101.	1.1	16
94	Inhibitory Activity of Clinical Thiazolidinedione Peroxisome Proliferator Activating Receptor-Î ³ Ligands Toward Internal Mammary Artery, Radial Artery, and Saphenous Vein Smooth Muscle Cell Proliferation. Circulation, 2003, 107, 2548-2550.	1.6	94
95	Troglitazone Stimulates Repair of the Endothelium and Inhibits Neointimal Formation in Denuded Rat Aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 762-768.	1.1	36
96	Role of Na-H Exchanger in Vascular Remodelling in Diabetes. , 2003, , 159-175.		1
97	Prevention of Accelerated Atherosclerosis by Angiotensin-Converting Enzyme Inhibition in Diabetic Apolipoprotein E–Deficient Mice. Circulation, 2002, 106, 246-253.	1.6	266
98	Lower Risk of Postinfarct Rupture in Mouse Heart Overexpressing \hat{l}^2 2-Adrenergic Receptors: Importance of Collagen Content. Journal of Cardiovascular Pharmacology, 2002, 40, 632-640.	0.8	26
99	Left ventricular remodelling impacts on coronary flow reserve in hypertensive patients: is there a vascular mechanism?. Journal of Hypertension, 2002, 20, 1291-1293.	0.3	10
100	Differential effects of gemfibrozil on migration, proliferation and proteoglycan production in human vascular smooth muscle cells. Atherosclerosis, 2002, 162, 119-129.	0.4	63
101	Mechanical Injury Models: Balloon Catheter Injury to Rat Common Carotid Artery. , 2001, 52, 7-13.		0
102	Identification of Cell Types and Quantification of Lesion Composition., 2001, 52, 187-194.		0
103	Mechanical strain stimulates a mitogenic response in coronary vascular smooth muscle cells via release of basic fibroblast growth factor. American Journal of Hypertension, 2001, 14, 1128-1134.	1.0	25
104	Inhibitory role for vitronectin in angiotensin II-induced vascular fibrosis. Journal of Molecular and Cellular Cardiology, 2001, 33, A29.	0.9	0
105	Reduced post-infarct rupture in mice overexpressing \hat{I}^2 2-adrenoceptor: Importance of collagen content. Journal of Molecular and Cellular Cardiology, 2001, 33, A38.	0.9	0
106	Troglitazone, but not rosiglitazone, inhibits Na/H exchange activity and proliferation of macrovascular endothelial cells. Journal of Diabetes and Its Complications, 2001, 15, 120-127.	1.2	39
107	Low Blood Flow After Angioplasty Augments Mechanisms of Restenosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 208-213.	1.1	52
108	Experimental Cardiac Fibrosis: Differential Time Course of Responses to Mineralocorticoid-Salt Administration. Endocrinology, 2001, 142, 3625-3631.	1.4	51

#	Article	IF	Citations
109	\hat{l}^2 ₂ -Adrenergic Receptor Overexpression Exacerbates Development of Heart Failure After Aortic Stenosis. Circulation, 2000, 101, 71-77.	1.6	130
110	Distinct Patterns of Transforming Growth Factor- \hat{l}^2 Isoform and Receptor Expression in Human Atherosclerotic Lesions. Circulation, 1999, 99, 2883-2891.	1.6	159
111	Cellular Mechanisms of Diabetic Vascular Hypertrophy. Microvascular Research, 1999, 57, 8-18.	1.1	58
112	Growth factors and extracellular signal-regulated kinase in vascular smooth muscle cells of normotensive and spontaneously hypertensive rats. Journal of Hypertension, 1999, 17, 1535-1541.	0.3	14
113	Inhibitory effects of tranilast on expression of transforming growth factor- \hat{l}^2 isoforms and receptors in injured arteries. Atherosclerosis, 1998, 137, 267-275.	0.4	63
114	Salt Induces Myocardial and Renal Fibrosis in Normotensive and Hypertensive Rats. Circulation, 1998, 98, 2621-2628.	1.6	313
115	Heparin inhibits mesenteric vascular hypertrophy in angiotensin Il-infusion hypertension in rats. Cardiovascular Research, 1998, 38, 247-255.	1.8	16
116	Vascular Growth Responses in SHR and WKY During Development of Renal (1K1C) Hypertension. American Journal of Hypertension, 1997, 10, 43-50.	1.0	5
117	Inhibition of Protein Tyrosine Kinases Attenuates Increases in Expression of Transforming Growth Factor-Î ² Isoforms and Their Receptors Following Arterial Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 2461-2470.	1.1	53
118	Angiotensin-Converting Enzyme Inhibition Abolishes Medial Smooth Muscle PDGF-AB Biosynthesis and Attenuates Cell Proliferation in Injured Carotid Arteries. Circulation, 1997, 96, 1631-1640.	1.6	36
119	Vascular changes in the diabetic kidney: Effects of ACE inhibition. Journal of Diabetes and Its Complications, 1995, 9, 296-300.	1.2	15
120	Angiotensin-Converting Enzyme Inhibition Reduces Diabetes-Induced Vascular Hypertrophy: Morphometric Studies. Journal of Vascular Research, 1995, 32, 183-189.	0.6	23
121	Different electrical responses to vasoactive agonists in morphologically distinct smooth muscle cell types Circulation Research, 1994, 75, 733-741.	2.0	67
122	Vascular hypertrophy in renal hypertensive spontaneously hypertensive rats Hypertension, 1994, 24, 8-15.	1.3	15
123	Mineralocorticoids, hypertension, and cardiac fibrosis Journal of Clinical Investigation, 1994, 93, 2578-2583.	3.9	399
124	Renin-dependent hypertension induces smooth muscle polyploidy in large and small vessels. Journal of Hypertension, 1993, 11, S118???S119.	0.3	4
125	Chronic angiotensin II type 1 receptor antagonism in genetic hypertension: effects on vascular structure and reactivity. Journal of Hypertension, 1993, $11,717-724$.	0.3	36
126	LONG-TERM ANGIOTENSIN II ANTAGONISM IN SPONTANEOUSLY HYPERTENSIVE RATS: EFFECTS ON BLOOD PRESSURE AND CARDIOVASCULAR AMPLIFIERS. Clinical and Experimental Pharmacology and Physiology, 1992, 19, 392-395.	0.9	40

#	Article	IF	CITATION
127	The role of cell proliferation and migration in the development of a neo-intimal layer in veins grafted into arteries, in rats. Cell and Tissue Research, 1992, 269, 281-287.	1.5	40
128	VEIN TO ARTERY GRAFTS: A MORPHOLOGICAL AND HISTOCHEMICAL STUDY OF THE HISTOGENESIS OF INTIMAL HYPERPLASIA. ANZ Journal of Surgery, 1992, 62, 297-303.	0.3	30
129	Vascular remodeling in the growth hormone transgenic mouse Circulation Research, 1989, 65, 1233-1240.	2.0	55
130	A Review of the Histologic Changes in Vein-to-Artery Grafts, With Particular Reference to Intimal Hyperplasia. Archives of Surgery, 1988, 123, 691.	2.3	170
131	A review of the proliferative behaviour, morphology and phenotypes of vascular smooth muscle. Atherosclerosis, 1987, 63, 99-107.	0.4	95
132	A Morphometric Study of Vein Graft Intimal Hyperplasia. Plastic and Reconstructive Surgery, 1986, 77, 451-454.	0.7	22
133	Block staining with p-phenylenediamine for light microscope autoradiography Journal of Histochemistry and Cytochemistry, 1983, 31, 1015-1018.	1.3	22
134	Testosterone (T) Enhances Apoptosis-Related Damage in Human Vascular Endothelial Cells. , 0, .		28