Andreas Baumgartner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9422465/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Near-Unity Cooper Pair Splitting Efficiency. Physical Review Letters, 2012, 109, 157002.	7.8	157
2	Finite-Bias Cooper Pair Splitting. Physical Review Letters, 2011, 107, 136801.	7.8	138
3	New Generation of Moiré Superlattices in Doubly Aligned hBN/Graphene/hBN Heterostructures. Nano Letters, 2019, 19, 2371-2376.	9.1	85
4	Nonlocal spectroscopy of Andreev bound states. Physical Review B, 2014, 89, .	3.2	80
5	Magnetic Field Tuning and Quantum Interference in a Cooper Pair Splitter. Physical Review Letters, 2015, 115, 227003.	7.8	59
6	Andreev bound states probed in three-terminal quantum dots. Physical Review B, 2017, 96, .	3.2	54
7	Contact resistance dependence of crossed Andreev reflection. Europhysics Letters, 2009, 87, 27011.	2.0	47
8	Local electrical tuning of the nonlocal signals in a Cooper pair splitter. Physical Review B, 2014, 90, .	3.2	44
9	Permalloy-based carbon nanotube spin-valve. Applied Physics Letters, 2010, 97, .	3.3	41
10	Resonant and Inelastic Andreev Tunneling Observed on a Carbon Nanotube Quantum Dot. Physical Review Letters, 2015, 115, 216801.	7.8	41
11	Entanglement witnessing and quantum cryptography with nonideal ferromagnetic detectors. Physical Review B, 2014, 89, .	3.2	38
12	Magnetic-Field-Independent Subgap States in Hybrid Rashba Nanowires. Physical Review Letters, 2020, 125, 017701.	7.8	38
13	Cooper-pair splitting in two parallel InAs nanowires. New Journal of Physics, 2018, 20, 063021.	2.9	34
14	Quantum Hall effect transition in scanning gate experiments. Physical Review B, 2007, 76, .	3.2	32
15	Scanning capacitance imaging of compressible and incompressible quantum Hall effect edge strips. New Journal of Physics, 2012, 14, 083015.	2.9	31
16	In Situ Strain Tuning in hBN-Encapsulated Graphene Electronic Devices. Nano Letters, 2019, 19, 4097-4102.	9.1	29
17	Spectroscopy of the superconducting proximity effect in nanowires using integrated quantum dots. Communications Physics, 2019, 2, .	5.3	28
18	Classical Hall effect in scanning gate experiments. Physical Review B, 2006, 74, .	3.2	27

#	Article	IF	CITATIONS
19	Optimized fabrication and characterization of carbon nanotube spin valves. Journal of Applied Physics, 2014, 115, .	2.5	25
20	Magnetic field and contact resistance dependence of non-local charge imbalance. Nanotechnology, 2010, 21, 274002.	2.6	24
21	A double quantum dot spin valve. Communications Physics, 2020, 3, .	5.3	23
22	Upconversion electroluminescence in InAs quantum dot light-emitting diodes. Applied Physics Letters, 2008, 92, .	3.3	22
23	Gigahertz Quantized Charge Pumping in Bottom-Gate-Defined InAs Nanowire Quantum Dots. Nano Letters, 2015, 15, 4585-4590.	9.1	22
24	Mobility Enhancement in Graphene by <i>inÂsitu</i> Reduction of Random Strain Fluctuations. Physical Review Letters, 2020, 124, 157701.	7.8	20
25	Ultraclean Single, Double, and Triple Carbon Nanotube Quantum Dots with Recessed Re Bottom Gates. Nano Letters, 2013, 13, 4522-4526.	9.1	18
26	Large spatial extension of the zero-energy Yu–Shiba–Rusinov state in a magnetic field. Nature Communications, 2020, 11, 1834.	12.8	17
27	Circuit Quantum Electrodynamics with Carbon-Nanotube-Based Superconducting Quantum Circuits. Physical Review Applied, 2021, 15, .	3.8	16
28	Subgap resonant quasiparticle transport in normal-superconductor quantum dot devices. Applied Physics Letters, 2016, 108, 172604.	3.3	15
29	Superconducting Contacts to a Monolayer Semiconductor. Nano Letters, 2021, 21, 5614-5619.	9.1	15
30	Carbon nanotube quantum dots on hexagonal boron nitride. Applied Physics Letters, 2014, 105, .	3.3	13
31	Highly symmetric and tunable tunnel couplings in InAs/InP nanowire heterostructure quantum dots. Nanotechnology, 2020, 31, 135003.	2.6	12
32	g-factor anisotropy in nanowire-based InAs quantum dots. , 2013, , .		10
33	Fork stamping of pristine carbon nanotubes onto ferromagnetic contacts for spin-valve devices. Physica Status Solidi (B): Basic Research, 2015, 252, 2496-2502.	1.5	9
34	Global strain-induced scalar potential in graphene devices. Communications Physics, 2021, 4, .	5.3	9
35	Sharp-line electroluminescence from individual quantum dots by resonant tunneling injection of carriers. Applied Physics Letters, 2006, 89, 092106.	3.3	8
36	Magnetoresistance engineering and singlet/triplet switching in InAs nanowire quantum dots with ferromagnetic sidegates. Physical Review B, 2016, 94, .	3.2	7

#	Article	IF	CITATIONS
37	Spectroscopy of the local density of states in nanowires using integrated quantum dots. Physical Review B, 2021, 104, .	3.2	7
38	Low-temperature and high magnetic field dynamic scanning capacitance microscope. Review of Scientific Instruments, 2009, 80, 013704.	1.3	6
39	Optical Imaging of Electrical Carrier Injection into Individual InAs Quantum Dots. Physical Review Letters, 2010, 105, 257401.	7.8	6
40	Full characterization of a carbon nanotube parallel double quantum dot. Physica Status Solidi (B): Basic Research, 2016, 253, 2428-2432.	1.5	6
41	Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts. Nanotechnology, 2016, 27, 195303.	2.6	6
42	Scanning Probe with Tuning Fork Sensor, Microfabricated Silicon Cantilever and Conductive Tip for Microscopy at Cryogenic Temperature. Japanese Journal of Applied Physics, 2006, 45, 1992-1995.	1.5	5
43	Scanning capacitance imaging of compressible quantum Hall effect stripes formed at the sample edge and at a potential fluctuation. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1548-1550.	2.7	5
44	Entanglement Detection with Non-Ideal Ferromagnetic Detectors. Acta Physica Polonica A, 2015, 127, 493-495.	0.5	5
45	Phonon Interaction on a Single Quantum Dot Emission Line. , 2009, , .		1
46	Local Investigation of the Classical and Quantum Hall effect. AIP Conference Proceedings, 2005, , .	0.4	0
47	Cooperâ€Paare tunneln durch einen Quantenpunkt. Physik in Unserer Zeit, 2016, 47, 62-63.	0.0	0
48	Radio-frequency characterization of a supercurrent transistor made of a carbon nanotube. Materials for Quantum Technology, 2021, 1, 035003.	3.1	0
49	Sharp Electroluminescence Lines Excited by Tunneling Injection Into a Large Ensemble of Quantum Dots. AIP Conference Proceedings, 2007, , .	0.4	0