
Qin Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9422241/publications.pdf Version: 2024-02-01

2.5

18

#	Article	IF	CITATIONS
1	3.3 Ã Cryo-EM Structure of a Nonenveloped Virus Reveals a Priming Mechanism for Cell Entry. Cell, 2010, 141, 472-482.	28.9	292
2	Common evolutionary origin of aquareoviruses and orthoreoviruses revealed by genome characterization of Golden shiner reovirus, Grass carp reovirus, Striped bass reovirus and golden ide reovirus (genus Aquareovirus, family Reoviridae). Journal of General Virology, 2002, 83, 1941-1951.	2.9	200
3	Subnanometer-Resolution Structures of the Grass Carp Reovirus Core and Virion. Journal of Molecular Biology, 2008, 382, 213-222.	4.2	118
4	Complete characterisation of the American grass carp reovirus genome (genus Aquareovirus: family) Tj ETQq0 0 (310-321.) rgBT /Ov 2.4	erlock 10 Tf : 92
5	Backbone Model of an Aquareovirus Virion by Cryo-Electron Microscopy and Bioinformatics. Journal of Molecular Biology, 2010, 397, 852-863.	4.2	85
6	Sequence of Genome Segments 1, 2, and 3 of the Grass Carp Reovirus (Genus Aquareovirus, Family) Tj ETQq0 0 C) rgBT /Ov 2.1	erlock 10 Tf S
7	3D reconstruction and capsid protein characterization of grass carp reovirus. Science in China Series C: Life Sciences, 2005, 48, 593.	1.3	68

8	Identification of the caveolae/raft-mediated endocytosis as the primary entry pathway for aquareovirus. Virology, 2018, 513, 195-207.	2.4	62
9	An improved RT-PCR assay for rapid and sensitive detection of grass carp reovirus. Journal of Virological Methods, 2010, 169, 28-33.	2.1	51
10	The NS16 protein of aquareovirus-C is a fusion-associated small transmembrane (FAST) protein, and its activity can be enhanced by the nonstructural protein NS26. Virus Research, 2013, 171, 129-137.	2.2	42
11	Structure of RNA polymerase complex and genome within a dsRNA virus provides insights into the mechanisms of transcription and assembly. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7344-7349.	7.1	42
12	Characterization of the nonstructural protein NS80 of grass carp reovirus. Archives of Virology, 2010, 155, 1755-1763.	2.1	32
13	Antibodies against outer-capsid proteins of grass carp reovirus expressed in E. coli are capable of neutralizing viral infectivity. Virology Journal, 2011, 8, 347.	3.4	31
14	Antigenic analysis of grass carp reovirus using single-chain variable fragment antibody against IgM from Ctenopharyngodon idella. Science China Life Sciences, 2013, 56, 59-65.	4.9	28
15	Comparative Proteomic Analysis of Lysine Acetylation in Fish CIK Cells Infected with Aquareovirus. International Journal of Molecular Sciences, 2017, 18, 2419.	4.1	24
16	Aquareovirus NS80 Recruits Viral Proteins to Its Inclusions, and Its C-Terminal Domain Is the Primary Driving Force for Viral Inclusion Formation. PLoS ONE, 2013, 8, e55334.	2.5	23
17	Yeast Surface Display of Capsid Protein VP7 of Grass Carp Reovirus: Fundamental Investigation for the Development of Vaccine Against Hemorrhagic Disease. Journal of Microbiology and Biotechnology, 2015, 25, 2135-2145.	2.1	19

Aquareovirus NS80 Initiates Efficient Viral Replication by Retaining Core Proteins within Replication-Associated Viral Inclusion Bodies. PLoS ONE, 2015, 10, e0126127.

Qin Fang

#	Article	IF	CITATIONS
19	VP5 autocleavage is required for efficient infection by in vitro-recoated aquareovirus particles. Journal of General Virology, 2015, 96, 1795-1800.	2.9	18
20	The VP2 protein of grass carp reovirus (GCRV) expressed in a baculovirus exhibits RNA polymerase activity. Virologica Sinica, 2014, 29, 86-93.	3.0	16
21	Identification of a functional motif in the AqRV NS26 protein required for enhancing the fusogenic activity of FAST protein NS16. Journal of General Virology, 2015, 96, 1080-1085.	2.9	15
22	High level expression of grass carp reovirus VP7 protein in prokaryotic cells. Virologica Sinica, 2008, 23, 51-56.	3.0	14
23	Construction and co-expression of grass carp reovirus VP6 protein and enhanced green fluorescence protein in the insect cells. Virologica Sinica, 2007, 22, 397-404.	3.0	13
24	High-resolution 3D structures reveal the biological functions of reoviruses. Virologica Sinica, 2013, 28, 318-325.	3.0	10
25	The N-Terminal of Aquareovirus NS80 Is Required for Interacting with Viral Proteins and Viral Replication. PLoS ONE, 2016, 11, e0148550.	2.5	10
26	NS38 is required for aquareovirus replication via interaction with viral core proteins and host eIF3A. Virology, 2019, 529, 216-225.	2.4	8
27	Grass Carp Reovirus Nonstructural Proteins Avoid Host Antiviral Immune Response by Targeting the RLR Signaling Pathway. Journal of Immunology, 2022, 208, 707-719.	0.8	8
28	Molecular characterization of nonstructural protein NS38 of grass carp reovirus. Virologica Sinica, 2010, 25, 123-129.	3.0	7
29	Endosomes and Microtubles are Required for Productive Infection in Aquareovirus. Virologica Sinica, 2020, 35, 200-211.	3.0	7
30	Expression of outer capsid protein VP5 of grass carp reovirus in E.coli and analysis of its immunogenicity. Virologica Sinica, 2009, 24, 545-551.	3.0	6
31	Functional analyses of mammalian reovirus nonstructural protein μNS. Virologica Sinica, 2009, 24, 1-8.	3.0	4
32	Expression and identification of inclusion forming-related domain of NS80 nonstructural protein of grass carp reovirus. Virologica Sinica, 2009, 24, 194-201.	3.0	4
33	Identification and characterization of two cleavage fragments from the Aquareovirus nonstructural protein NS80. Virologica Sinica, 2016, 31, 314-323.	3.0	4
34	Characterization of viral entry and infection of quantum dot-labeled grass carp reovirus. Virologica Sinica, 2017, 32, 163-166.	3.0	4
35	N-Terminal Myristoylated VP5 is Required for Penetrating Cell Membrane and Promoting Infectivity in Aquareoviruses. Virologica Sinica, 2018, 33, 287-290.	3.0	3
36	Molecular Characterization of Outer Capsid Proteins VP5 and VP7 of Grass Carp Reovirus. Viruses, 2022, 14, 1032.	3.3	3