Mimoun El Marssi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9422019/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Raman and dielectric study of ferroelectric ceramics. European Physical Journal B, 1999, 9, 599-604.	0.6	270
2	Ferroelectric transition in an epitaxial barium titanate thin film: Raman spectroscopy and x-ray diffraction study. Journal of Applied Physics, 2003, 94, 3307-3312.	1.1	138
3	Lead-free Ba0.8Ca0.2(ZrxTi1â^x)O3 ceramics with large electrocaloric effect. Applied Physics Letters, 2015, 106, .	1.5	127
4	Dielectric, ferroelectric, and energy storage properties in dysprosium doped sodium bismuth titanate ceramics. Ceramics International, 2018, 44, 19451-19460.	2.3	86
5	Relaxor-like and spectroscopic properties of niobium modified barium titanate. European Physical Journal B, 2000, 18, 605-610.	0.6	73
6	Sequence of structural transitions and electrocaloric properties in (Ba1-xCax)(Zr0.1Ti0.9)O3 ceramics. Journal of Alloys and Compounds, 2017, 713, 164-179.	2.8	62
7	Room temperature electro-caloric effect in lead-free Ba(Zr0.1Ti0.9)1â~'Sn O3 (x=0, x=0.075) ceramics. Solid State Communications, 2015, 201, 64-67.	0.9	60
8	Phase transitions, energy storage performances and electrocaloric effect of the lead-free Ba0.85Ca0.15Zr0.10Ti0.90O3 ceramic relaxor. Journal of Materials Science: Materials in Electronics, 2019, 30, 6430-6438.	1.1	58
9	Electrocaloric effect and luminescence properties of lanthanide doped (Na1/2Bi1/2)TiO3 lead free materials. Applied Physics Letters, 2015, 107, .	1.5	56
10	Electrocaloric effect and energy storage in lead free Gd 0.02 Na 0.5 Bi 0.48 TiO 3 ceramic. Solid State Sciences, 2017, 66, 31-37.	1.5	52
11	Complex impedance and Raman spectroscopy of Na0.5(Bi1-xDyx)0.5TiO3 ceramics. Ceramics International, 2020, 46, 10979-10991.	2.3	46
12	Indirect and direct electrocaloric measurements of (Ba1â^xCax)(Zr0.1Ti0.9)O3 ceramics (xÂ=Â0.05, xÂ=Â0.20). Journal of Alloys and Compounds, 2016, 667, 198-203.	2.8	45
13	Enhanced dielectric and electrocaloric properties in lead-free rod-like BCZT ceramics. Journal of Advanced Ceramics, 2020, 9, 210-219.	8.9	45
14	Thermally-stable high energy storage performances and large electrocaloric effect over a broad temperature span in lead-free BCZT ceramic. RSC Advances, 2020, 10, 30746-30755.	1.7	43
15	Electro-caloric effect in lead-free ferroelectric Ba1â^'Ca (Zr0.1Ti0.9)0.925 Sn0.075O3 ceramics. Ceramics International, 2015, 41, 15103-15110.	2.3	38
16	Recent Progress in the Synthesis of MoS2 Thin Films for Sensing, Photovoltaic and Plasmonic Applications: A Review. Materials, 2021, 14, 3283.	1.3	38
17	Energy storage property in lead free gd doped Na1/2Bi1/2TiO3 ceramics. Solid State Communications, 2016, 245, 1-4.	0.9	32
18	Structural, dielectric, and ferroelectric properties of lead-free BCZT ceramics elaborated by low-temperature hydrothermal processing. Journal of Materials Science: Materials in Electronics, 2020, 31, 10096-10104	1.1	31

MIMOUN EL MARSSI

#	Article	IF	CITATIONS
19	Ferroelectric BaTiO3/BaZrO3 superlattices: X-ray diffraction, Raman spectroscopy, and polarization hysteresis loops. Journal of Applied Physics, 2010, 108, 084104.	1.1	30
20	Ferroelectric phase changes and electrocaloric effects in Ba(Zr0.1Ti0.9)1â^'x Sn x O3 ceramics solid solution. Journal of Materials Science, 2016, 51, 3454-3462.	1.7	30
21	Enhancing the dielectric, electrocaloric and energy storage properties of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics prepared via sol-gel process. Physica B: Condensed Matter, 2021, 603, 412760.	1.3	30
22	Dielectric permittivity enhancement and large electrocaloric effect in the lead free (Ba0.8Ca0.2)1-xLa2x/3TiO3 ferroelectric ceramics. Journal of Alloys and Compounds, 2018, 730, 501-508.	2.8	27
23	Stress and orientation in the relaxor/ferroelectric superlattices(PbMg1â^•3Nb2â^•3O3)(1â^'x)Ĵ›â^•(PbTiO3)xΛ. Physical Review B, 2005, 71, .	1.1	26
24	Tailoring the dielectric and energy storage properties in BaTiO3/BaZrO3 superlattices. Materials Letters, 2019, 234, 279-282.	1.3	23
25	Structural, dielectric, and ferroelectric properties of Na0.5(Bi1-xNdx)0.5TiO3 ceramics for energy storage and electrocaloric applications. Ceramics International, 2021, 47, 26539-26551.	2.3	23
26	Soft mode dynamics and the reduction ofTi4+disorder in ferroelectricâ^•relaxor superlatticesBaTiO3â^•BaTi0.68Zr0.32O3. Physical Review B, 2006, 74, .	1.1	22
27	Structural, dielectric, electrocaloric and energy storage properties of lead free Ba0.975La0.017(ZrxTi0.95-x)Sn0.05O3 (x = 0.05; 0.20) ceramics. Materials Chemistry and Physics, 2020, 252, 123462.	2.0	22
28	Electrostatic energy storage in antiferroelectric like perovskite. Superlattices and Microstructures, 2019, 127, 43-48.	1.4	21
29	Intrinsic dead layer effects in relaxed epitaxial BaTiO3 thin film grown by pulsed laser deposition. Materials and Design, 2017, 122, 157-163.	3.3	20
30	Electrocaloric effect in Ba _{0.2} Ca _{0.8} Ti _{0.95} Ge _{0.05} O ₃ determined by a new pyroelectric method. Europhysics Letters, 2015, 111, 57008.	0.7	17
31	Structural, dielectric and electrocaloric properties in lead-free Zr-doped Ba0.8Ca0.2TiO3 solid solid solution. Solid State Communications, 2016, 237-238, 49-54.	0.9	16
32	Effect of rare earth on physical properties of Na0.5Bi0.5TiO3 system: A density functional theory investigation. Journal of Rare Earths, 2022, 40, 473-481.	2.5	16
33	Phase Diagram of BiFeO ₃ /LaFeO ₃ Superlattices: Antiferroelectricâ€Like State Stability Arising from Strain Effects and Symmetry Mismatch at Heterointerfaces. Advanced Materials Interfaces, 2017, 4, 1601036.	1.9	15
34	Impedance spectroscopy analysis of the diffuse phase transition in lead-free (Ba0,85Ca0,15)(Zr0.1Ti0.9)O3 ceramic elaborated by sol-gel method. Superlattices and Microstructures, 2019, 127, 71-79.	1.4	14
35	Experimental and Theoretical Investigations of Low-Dimensional BiFeO3 System for Photocatalytic Applications. Catalysts, 2022, 12, 215.	1.6	14
36	PbMg1â^•3Nb2â^•3O3â^•PbTiO3superlattices: An x-ray diffraction and Raman spectroscopy temperature-dependent study. Physical Review B, 2007, 76, .	1.1	13

MIMOUN EL MARSSI

#	Article	IF	CITATIONS
37	Highly constrained ferroelectric [BaTiO3](1â^'x)ĥ/[BaZrO3]xĥ superlattices: X-ray diffraction and Raman spectroscopy. Journal of Applied Physics, 2014, 116, 034108.	1.1	13
38	Large direct and inverse electrocaloric effects in lead-free Dy doped 0.975KNN-0.025NBT ceramics. Ceramics International, 2021, 47, 31286-31293.	2.3	12
39	Giant increase of ferroelectric phase transition temperature in highly strained ferroelectric [BaTiO ₃] _{0.7î>} /[BaZrO ₃] _{0.3î>} superlattice. Europhysics Letters, 2014, 106, 17004.	0.7	11
40	Structural and dielectric properties of a new lead-free ferroelectric Ba0.8Ca0.2Ti0.8Ge0.2O3 ceramics. Superlattices and Microstructures, 2014, 71, 162-167.	1.4	11
41	Phase transitions in BaTiO3 thin films and BaTiO3/BaZrO3 superlattices. Journal of Applied Physics, 2014, 116, 184102.	1.1	10
42	Structural, optical, and dielectric properties of Bi ₂ O ₃ -K ₂ O-TiO ₂ -P ₂ O ₅ glasses and related glass-ceramics. Phase Transitions, 2020, 93, 1030-1047.	0.6	10
43	The structural, dielectric, electrocaloric, and energy storage properties of lead-free Ba0·90Ca0·10Zr0·15Ti0·85O3. Ceramics International, 2022, 48, 3157-3171.	2.3	10
44	Lead free Ba0.8Ca0.2TexTi1â^'xO3 ferroelectric ceramics exhibiting high electrocaloric properties. Journal of Applied Physics, 2017, 121, .	1.1	9
45	Electrocaloric response in lanthanum-modified lead zirconate titanate ceramics. Journal of Applied Physics, 2020, 127, .	1.1	9
46	Structural investigation of (111) oriented (BiFeO3)(1- <i>x</i>)ĥ/(LaFeO3) <i>x</i> ĥ superlattices by X-ray diffraction and Raman spectroscopy. Journal of Applied Physics, 2018, 123, .	1.1	8
47	Electrocaloric effect and high energy storage efficiency in lead-free Ba0.95Ca0.05Ti0.89Sn0.11O3 ceramic elaborated by sol–gel method. Journal of Materials Science: Materials in Electronics, 2022, 33, 2067-2079.	1.1	8
48	Influence of temperature and wavelength on the switchable photovoltaic response of a BiFe0.95Mn0.05O3 thin film. Journal of Applied Physics, 2017, 122, .	1.1	7
49	Structural, optical, and dielectric properties of the BaO–TiO2–P2O5 glasses. Journal of the Australian Ceramic Society, 2020, 56, 1467-1479.	1.1	7
50	Structural investigation, dielectric, ferroelectric, and elecrocaloric properties of lead-free Ba(1â^'x)CaxTi(1â^'x)(Li1/3Nb2/3)xO3â´Î´ (x = 0.02 and x = 0.07) ceramics. Journal of Materia in Electronics, 2018, 29, 18640-18649.	ls Sicience	: M e terials
51	Interlayer strain effects on the structural behavior of BiFeO3/LaFeO3 superlattices. Journal of Applied Physics, 2018, 124, .	1.1	6
52	Quantification and mapping of elastic strains in ferroelectric [BaZrO3]xá´§/[BaTiO3](1-x)á´§ superlattices. Applied Surface Science, 2020, 512, 145761.	3.1	6
53	Impedance spectroscopy studies on lead free Ba 1-x Mg x (Ti 0.9 Zr 0.1)O 3 ceramics. Superlattices and Microstructures, 2018, 118, 45-54.	1.4	5
54	Structural, vibrational, and dielectric investigations of Ba0.925Bi0.05(Ti0.95â^'xZrx)Sn0.05O3 ceramics. Journal of Materials Science: Materials in Electronics, 2018, 29, 16144-16154.	1.1	5

MIMOUN EL MARSSI

#	Article	IF	CITATIONS
55	Fabrication and manipulation of nanopillars using electron induced excitation. Journal of Applied Physics, 2018, 124, .	1.1	5
56	Mean field theory and Monte Carlo simulation of phase transitions and magnetic properties of a tridimensional Fe7S8 compound. Physica Scripta, 2020, 95, 045803.	1.2	5
57	Phase transition in ferroelectric BaTiO ₃ /SrTiO ₃ superlattice: Raman spectroscopy studies. Ferroelectrics, 2016, 501, 61-69.	0.3	4
58	Conduction mechanism and switchable photovoltaic effect in (1 1 1) oriented BiFe0.95Mn0.05O3 thin film. Journal of Physics Condensed Matter, 2019, 31, 275701.	0.7	4
59	Modelling of the ferroelectric and energy storage properties of PbZr _{1â^'x} Ti _x O ₃ thin films using Monte Carlo simulation. Materials Research Express, 2019, 6, 126429.	0.8	4
60	Impedance spectroscopy and conduction mechanism of a BiFe0.95Mn0.05O3 thin film. Thin Solid Films, 2021, 724, 138616.	0.8	4
61	Theoretical Investigation of Magnetoelectric Coupling in MFe2O4/PbZ0.5T0.5O3/MFe2O4 (M = Ni, Co) Heterostructure. Journal of Superconductivity and Novel Magnetism, 0, , 1.	0.8	4
62	Photoelectrochemical Enhancement of Graphene@WS2 Nanosheets for Water Splitting Reaction. Nanomaterials, 2022, 12, 1914.	1.9	4
63	Conduction mechanism in epitaxial BiFe0.95Mn0.05O3 thin film. Journal of Applied Physics, 2017, 122, .	1.1	3
64	Energy storage property of Lead-free Na _{0.5} Bi _{0.5} TiO ₃ ceramic and thin film. , 2017, , .		2
65	Structural behaviour of BiFeO3/SrRuO3 superlattices: An X-ray diffraction and Raman spectroscopy investigation. Superlattices and Microstructures, 2021, 156, 106983.	1.4	2
66	Impact of annealing on electrocaloric response in Lanthanum-modified lead zirconate titanate ceramic. Journal of Alloys and Compounds, 2022, 907, 164517.	2.8	2
67	Nanostructured BaTi1-xSnxO3 ferroelectric materials for electrocaloric applications and energy performance. Current Applied Physics, 2022, 38, 59-66.	1.1	2
68	MoS ₂ Based Nanomaterial for Light Emitting Diode Applications. , 2022, , .		1
69	Tailoring the photovoltaic effect in (1 1 1) oriented BiFeO3/LaFeO3 superlattices. Journal of Physics Condensed Matter, 2020, 32, 135301.	0.7	0
70	Anti-polar state in BiFeO ₃ /NdFeO ₃ superlattices. Journal of Applied Physics, 2021, 130, 244101.	1.1	0