
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9421928/publications.pdf Version: 2024-02-01



**ΥΠΑΝ-**ΒΙΛΟ ΗΠΑΝΟ

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Boosting Electrocatalytic CO <sub>2</sub> Reduction with Conjugated Bimetallic Co/Zn<br>Polyphthalocyanine Frameworks. CCS Chemistry, 2023, 5, 1130-1143.                                                        | 7.8  | 37        |
| 2  | Metal-organic frameworks bonded with metal <i>N</i> -heterocyclic carbenes for efficient catalysis.<br>National Science Review, 2022, 9, .                                                                       | 9.5  | 92        |
| 3  | Boron-doped Covalent Triazine Framework for Efficient CO2 Electroreduction. Chemical Research in Chinese Universities, 2022, 38, 141-146.                                                                        | 2.6  | 9         |
| 4  | Graphene Quantum Dots Supported on Fe-based Metal-Organic Frameworks for Efficient<br>Photocatalytic CO <sub>2</sub> Reduction <sup>※</sup> . Acta Chimica Sinica, 2022, 80, 22.                                 | 1.4  | 16        |
| 5  | Three-dimensional porphyrinic covalent organic frameworks for highly efficient electroreduction of carbon dioxide. Journal of Materials Chemistry A, 2022, 10, 4653-4659.                                        | 10.3 | 50        |
| 6  | Spiral effect of helical carbon nanorods boosting electrocatalysis of oxygen reduction reaction.<br>Science China Materials, 2022, 65, 1531-1538.                                                                | 6.3  | 6         |
| 7  | Ni single-atom sites supported on carbon aerogel for highly efficient electroreduction of carbon dioxide with industrial current densities. EScience, 2022, 2, 295-303.                                          | 41.6 | 81        |
| 8  | Morphology and composition dependence of multicomponent Cu-based nanoreactor for tandem electrocatalysis CO2 reduction. Applied Catalysis B: Environmental, 2022, 314, 121498.                                   | 20.2 | 39        |
| 9  | Highly efficient electroreduction of CO2 by defect single-atomic Ni-N3 sites anchored on ordered micro-macroporous carbons. Science China Chemistry, 2022, 65, 1584-1593.                                        | 8.2  | 35        |
| 10 | A CO <sub>2</sub> â€Masked Carbene Functionalized Covalent Organic Framework for Highly Efficient<br>Carbon Dioxide Conversion. Angewandte Chemie, 2022, 134, .                                                  | 2.0  | 9         |
| 11 | Self-Assembly of Imidazolium-Functionalized Zr-Based Metal–Organic Polyhedra for Catalytic<br>Conversion of CO <sub>2</sub> into Cyclic Carbonates. Inorganic Chemistry, 2021, 60, 2112-2116.                    | 4.0  | 34        |
| 12 | Construction of Donor–Acceptor Heterojunctions in Covalent Organic Framework for Enhanced<br>CO <sub>2</sub> Electroreduction. Small, 2021, 17, e2004933.                                                        | 10.0 | 95        |
| 13 | Spatial Sites Separation Strategy to Fabricate Atomically Isolated Nickel Catalysts for Efficient CO2<br>Electroreduction. , 2021, 3, 454-461.                                                                   |      | 34        |
| 14 | Conductive Twoâ€Dimensional Phthalocyanineâ€based Metal–Organic Framework Nanosheets for<br>Efficient Electroreduction of CO <sub>2</sub> . Angewandte Chemie - International Edition, 2021, 60,<br>17108-17114. | 13.8 | 213       |
| 15 | Conductive Twoâ€Dimensional Phthalocyanineâ€based Metal–Organic Framework Nanosheets for<br>Efficient Electroreduction of CO <sub>2</sub> . Angewandte Chemie, 2021, 133, 17245-17251.                           | 2.0  | 48        |
| 16 | Conductive phthalocyanine-based metal-organic framework as a highly efficient electrocatalyst for carbon dioxide reduction reaction. Science China Chemistry, 2021, 64, 1332-1339.                               | 8.2  | 68        |
| 17 | Porous Metal–Organic Framework Liquids for Enhanced CO <sub>2</sub> Adsorption and Catalytic<br>Conversion. Angewandte Chemie - International Edition, 2021, 60, 20915-20920.                                    | 13.8 | 120       |
| 18 | Porous Metal–Organic Framework Liquids for Enhanced CO <sub>2</sub> Adsorption and Catalytic<br>Conversion. Angewandte Chemie, 2021, 133, 21083-21088.                                                           | 2.0  | 39        |

| #  | Article                                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Multifunctional Gold Nanoparticles@Imidazolium-Based Cationic Covalent Triazine Frameworks for Efficient Tandem Reactions. CCS Chemistry, 2021, 3, 2368-2380.                                                                                                                        | 7.8  | 55        |
| 20 | Highly Selective Tandem Electroreduction of CO <sub>2</sub> to Ethylene over Atomically Isolated<br>Nickel–Nitrogen Site/Copper Nanoparticle Catalysts. Angewandte Chemie, 2021, 133, 25689-25696.                                                                                   | 2.0  | 31        |
| 21 | Highly Selective Tandem Electroreduction of CO <sub>2</sub> to Ethylene over Atomically Isolated<br>Nickel–Nitrogen Site/Copper Nanoparticle Catalysts. Angewandte Chemie - International Edition, 2021,<br>60, 25485-25492.                                                         | 13.8 | 168       |
| 22 | Soluble imidazolium-functionalized coordination cages for efficient homogeneous catalysis of CO <sub>2</sub> cycloaddition reactions. Chemical Communications, 2021, 57, 2140-2143.                                                                                                  | 4.1  | 17        |
| 23 | Integration of metalloporphyrin into cationic covalent triazine frameworks for the synergistically enhanced chemical fixation of CO <sub>2</sub> . Catalysis Science and Technology, 2020, 10, 8026-8033.                                                                            | 4.1  | 34        |
| 24 | Highly Selective CO <sub>2</sub> Electroreduction to CH <sub>4</sub> by Inâ€Situ Generated<br>Cu <sub>2</sub> O Singleâ€Type Sites on a Conductive MOF: Stabilizing Key Intermediates with Hydrogen<br>Bonding. Angewandte Chemie, 2020, 132, 23849-23856.                           | 2.0  | 70        |
| 25 | Conductive Phthalocyanineâ€Based Covalent Organic Framework for Highly Efficient Electroreduction of Carbon Dioxide. Small, 2020, 16, e2005254.                                                                                                                                      | 10.0 | 128       |
| 26 | Highly Selective CO <sub>2</sub> Electroreduction to CH <sub>4</sub> by Inâ€Situ Generated<br>Cu <sub>2</sub> O Singleâ€Type Sites on a Conductive MOF: Stabilizing Key Intermediates with Hydrogen<br>Bonding. Angewandte Chemie - International Edition, 2020, 59, 23641-23648.    | 13.8 | 335       |
| 27 | Frontispiece: Highly Selective CO <sub>2</sub> Electroreduction to CH <sub>4</sub> by Inâ€Situ<br>Generated Cu <sub>2</sub> O Singleâ€īype Sites on a Conductive MOF: Stabilizing Key Intermediates with<br>Hydrogen Bonding. Angewandte Chemie - International Edition, 2020, 59, . | 13.8 | 1         |
| 28 | Frontispiz: Highly Selective CO <sub>2</sub> Electroreduction to CH <sub>4</sub> by Inâ€Situ Generated<br>Cu <sub>2</sub> O Singleâ€Type Sites on a Conductive MOF: Stabilizing Key Intermediates with Hydrogen<br>Bonding. Angewandte Chemie, 2020, 132, .                          | 2.0  | 0         |
| 29 | Imidazoliumâ€Functionalized Cationic Covalent Triazine Frameworks Stabilized Copper Nanoparticles<br>for Enhanced CO <sub>2</sub> Electroreduction. ChemCatChem, 2020, 12, 3530-3536.                                                                                                | 3.7  | 31        |
| 30 | Unraveling the relationship of the pore structures between the metal-organic frameworks and their derived carbon materials. Inorganic Chemistry Communication, 2020, 114, 107825.                                                                                                    | 3.9  | 11        |
| 31 | Integration of Strong Electron Transporter Tetrathiafulvalene into Metalloporphyrin-Based<br>Covalent Organic Framework for Highly Efficient Electroreduction of CO <sub>2</sub> . ACS Energy<br>Letters, 2020, 5, 1005-1012.                                                        | 17.4 | 180       |
| 32 | Atomically dispersed Ni species on N-doped carbon nanotubes for electroreduction of CO2 with nearly 100% CO selectivity. Applied Catalysis B: Environmental, 2020, 271, 118929.                                                                                                      | 20.2 | 158       |
| 33 | Nâ€Đoped Carbon Aerogel Derived from a Metal–Organic Framework Foam as an Efficient<br>Electrocatalyst for Oxygen Reduction. Chemistry - an Asian Journal, 2019, 14, 3642-3647.                                                                                                      | 3.3  | 18        |
| 34 | Cobalt single-atoms anchored on porphyrinic triazine-based frameworks as bifunctional<br>electrocatalysts for oxygen reduction and hydrogen evolution reactions. Journal of Materials<br>Chemistry A, 2019, 7, 1252-1259.                                                            | 10.3 | 152       |
| 35 | Solid-state synthesis of MoS2 nanorod from molybdenum-organic framework for efficient hydrogen evolution reaction. Science China Materials, 2019, 62, 965-972.                                                                                                                       | 6.3  | 37        |
| 36 | Unraveling the relationship between the morphologies of metal–organic frameworks and the properties of their derived carbon materials. Dalton Transactions, 2019, 48, 7211-7217.                                                                                                     | 3.3  | 23        |

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Integration of adsorption and photosensitivity capabilities into a cationic multivariate metal-organic framework for enhanced visible-light photoreduction reaction. Applied Catalysis B: Environmental, 2019, 253, 323-330.                  | 20.2 | 80        |
| 38 | A mesoporous cationic metal–organic framework with a high density of positive charge for enhanced removal of dichromate from water. Dalton Transactions, 2019, 48, 6680-6684.                                                                 | 3.3  | 23        |
| 39 | Salen-Co( <scp>iii</scp> ) insertion in multivariate cationic metal–organic frameworks for the enhanced cycloaddition reaction of carbon dioxide. Chemical Communications, 2019, 55, 4063-4066.                                               | 4.1  | 52        |
| 40 | Porous nitrogen/halogen dual-doped nanocarbons derived from imidazolium functionalized cationic<br>metal-organic frameworks for highly efficient oxygen reduction reaction. Science China Materials,<br>2019, 62, 671-680.                    | 6.3  | 30        |
| 41 | Metal–organic frameworks and porous organic polymers for sustainable fixation of carbon dioxide<br>into cyclic carbonates. Coordination Chemistry Reviews, 2019, 378, 32-65.                                                                  | 18.8 | 329       |
| 42 | Unraveling the Reactivity and Selectivity of Atomically Isolated Metal–Nitrogen Sites Anchored on<br>Porphyrinic Triazine Frameworks for Electroreduction of CO <sub>2</sub> . CCS Chemistry, 2019, 1,<br>384-395.                            | 7.8  | 125       |
| 43 | Migration-Prevention Strategy to Fabricate Single-Atom Fe Implanted N-Doped Porous Carbons for Efficient Oxygen Reduction. Research, 2019, 2019, 1768595.                                                                                     | 5.7  | 25        |
| 44 | Imidazoliumâ€Based Cationic Covalent Triazine Frameworks for Highly Efficient Cycloaddition of<br>Carbon Dioxide. ChemCatChem, 2018, 10, 2036-2040.                                                                                           | 3.7  | 84        |
| 45 | Highly selective sensing of Fe <sup>3+</sup> by an anionic metal–organic framework containing uncoordinated nitrogen and carboxylate oxygen sites. Dalton Transactions, 2018, 47, 3452-3458.                                                  | 3.3  | 119       |
| 46 | Zinc Porphyrin/Imidazolium Integrated Multivariate Zirconium Metal–Organic Frameworks for<br>Transformation of CO <sub>2</sub> into Cyclic Carbonates. Inorganic Chemistry, 2018, 57, 2584-2593.                                              | 4.0  | 153       |
| 47 | Atomically Dispersed Iron–Nitrogen Active Sites within Porphyrinic Triazine-Based Frameworks for<br>Oxygen Reduction Reaction in Both Alkaline and Acidic Media. ACS Energy Letters, 2018, 3, 883-889.                                        | 17.4 | 273       |
| 48 | Rhenium-modified porous covalent triazine framework for highly efficient photocatalytic carbon<br>dioxide reduction in a solid–gas system. Catalysis Science and Technology, 2018, 8, 2224-2230.                                              | 4.1  | 104       |
| 49 | Fast, highly selective and sensitive anionic metal-organic framework with nitrogen-rich sites<br>fluorescent chemosensor for nitro explosives detection. Journal of Hazardous Materials, 2018, 344,<br>283-290.                               | 12.4 | 129       |
| 50 | An imidazolium-functionalized mesoporous cationic metal–organic framework for cooperative<br>CO <sub>2</sub> fixation into cyclic carbonate. Chemical Communications, 2018, 54, 342-345.                                                      | 4.1  | 142       |
| 51 | Encapsulation of Phosphotungstic Acid into Metal–Organic Frameworks with Tunable Window Sizes:<br>Screening of PTA@MOF Catalysts for Efficient Oxidative Desulfurization. Inorganic Chemistry, 2018,<br>57, 13009-13019.                      | 4.0  | 100       |
| 52 | Defective Pt nanoparticles encapsulated in mesoporous metal–organic frameworks for enhanced catalysis. Chemical Communications, 2018, 54, 8822-8825.                                                                                          | 4.1  | 19        |
| 53 | Porous hollow MoS <sub>2</sub> microspheres derived from core–shell sulfonated polystyrene<br>microspheres@MoS <sub>2</sub> nanosheets for efficient electrocatalytic hydrogen evolution.<br>Inorganic Chemistry Frontiers, 2017, 4, 741-747. | 6.0  | 18        |
| 54 | A flexible porous copper-based metal-organic cage for carbon dioxide adsorption. Inorganic Chemistry<br>Communication, 2017, 78, 28-31.                                                                                                       | 3.9  | 4         |

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Hierarchically porous nitrogen-doped carbon nanotubes derived from core–shell ZnO@zeolitic<br>imidazolate framework nanorods for highly efficient oxygen reduction reactions. Journal of<br>Materials Chemistry A, 2017, 5, 12322-12329. | 10.3 | 93        |
| 56 | Facile ultrafine copper seed-mediated approach for fabricating quasi-two-dimensional palladium-copper bimetallic trigonal hierarchical nanoframes. Nano Research, 2017, 10, 2810-2822.                                                   | 10.4 | 5         |
| 57 | Boosting Oxidative Desulfurization of Model and Real Gasoline over Phosphotungstic Acid<br>Encapsulated in Metal–Organic Frameworks: The Window Size Matters. ChemCatChem, 2017, 9, 971-979.                                             | 3.7  | 103       |
| 58 | Postsynthetic ionization of an imidazole-containing metal–organic framework for the cycloaddition of carbon dioxide and epoxides. Chemical Science, 2017, 8, 1570-1575.                                                                  | 7.4  | 346       |
| 59 | Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions.<br>Chemical Society Reviews, 2017, 46, 126-157.                                                                                           | 38.1 | 1,554     |
| 60 | Water-Stable Anionic Metal–Organic Framework for Highly Selective Separation of Methane from<br>Natural Gas and Pyrolysis Gas. ACS Applied Materials & Interfaces, 2016, 8, 9777-9781.                                                   | 8.0  | 148       |
| 61 | Soluble Metal-Nanoparticle-Decorated Porous Coordination Polymers for the Homogenization of Heterogeneous Catalysis. Journal of the American Chemical Society, 2016, 138, 10104-10107.                                                   | 13.7 | 136       |
| 62 | A bifunctional cationic porous organic polymer based on a Salen-(Al) metalloligand for the<br>cycloaddition of carbon dioxide to produce cyclic carbonates. Chemical Communications, 2016, 52,<br>13288-13291.                           | 4.1  | 100       |
| 63 | Water-medium C–H activation over a hydrophobic perfluoroalkane-decorated metal-organic<br>framework platform. Journal of Catalysis, 2016, 333, 1-7.                                                                                      | 6.2  | 58        |
| 64 | From covalent–organic frameworks to hierarchically porous B-doped carbons: a molten-salt<br>approach. Journal of Materials Chemistry A, 2016, 4, 4273-4279.                                                                              | 10.3 | 88        |
| 65 | An Anion Metal–Organic Framework with Lewis Basic Sites-Rich toward Charge-Exclusive Cationic<br>Dyes Separation and Size-Selective Catalytic Reaction. Inorganic Chemistry, 2016, 55, 2641-2649.                                        | 4.0  | 139       |
| 66 | A Metallosalenâ€based Porous Organic Polymer for Olefin Epoxidation. ChemCatChem, 2015, 7, 2340-2345.                                                                                                                                    | 3.7  | 26        |
| 67 | Coordination polymers constructed from a tripodal phosphoryl carboxylate ligand: synthesis, structures and physical properties. CrystEngComm, 2015, 17, 4547-4553.                                                                       | 2.6  | 6         |
| 68 | Hierarchically micro- and mesoporous metal–organic framework-supported alloy nanocrystals as<br>bifunctional catalysts: Toward cooperative catalysis. Journal of Catalysis, 2015, 330, 452-457.                                          | 6.2  | 49        |
| 69 | Porous Anionic Indium–Organic Framework with Enhanced Gas and Vapor Adsorption and Separation<br>Ability. ChemSusChem, 2014, 7, 2647-2653.                                                                                               | 6.8  | 101       |
| 70 | Bimetallic alloy nanocrystals encapsulated in ZIF-8 for synergistic catalysis of ethylene oxidative degradation. Chemical Communications, 2014, 50, 10115.                                                                               | 4.1  | 106       |
| 71 | Phosphotungstic acid encapsulated in the mesocages of amine-functionalized metal–organic<br>frameworks for catalytic oxidative desulfurization. Dalton Transactions, 2014, 43, 11950-11958.                                              | 3.3  | 124       |
| 72 | Syntheses, structures and photoluminescent properties of lanthanide coordination polymers based on pyridyl functionalized imidazole dicarboxylic acid. RSC Advances, 2013, 3, 9279.                                                      | 3.6  | 24        |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Construction of a Polyhedral Metal–Organic Framework via a Flexible Octacarboxylate Ligand for<br>Gas Adsorption and Separation. Inorganic Chemistry, 2013, 52, 3127-3132.                                                               | 4.0 | 85        |
| 74 | Direct CH Bond Arylation of Indoles with Aryl Boronic Acids Catalyzed by Palladium Nanoparticles<br>Encapsulated in Mesoporous Metal–Organic Framework. ChemCatChem, 2013, 5, 1877-1883.                                                | 3.7 | 85        |
| 75 | Structure Versatility of Coordination Polymers Constructed from a Semirigid Tetracarboxylate<br>Ligand: Syntheses, Structures, and Photoluminescent Properties. Crystal Growth and Design, 2013, 13,<br>255-263.                         | 3.0 | 65        |
| 76 | Crystalline Hybrid Solid Materials of Palladium and Decamethylcucurbit[5]uril as Recoverable<br>Precatalysts for Heck Crossâ€Coupling Reactions. Chemistry - A European Journal, 2013, 19, 15661-15668.                                  | 3.3 | 18        |
| 77 | Two-dimensional decanuclear erbium wheel supported by mixed hemimellitate and 4-chlorobenzoate<br>ligands. CrystEngComm, 2012, 14, 6045.                                                                                                 | 2.6 | 9         |
| 78 | Three-Dimensional Pillared-Layer 3d-4f Heterometallic Coordination Polymers With or Without<br>Halides. Crystal Growth and Design, 2012, 12, 3549-3556.                                                                                  | 3.0 | 40        |
| 79 | Three-dimensional Yb(III)–Ag(I) heterometallic coordination polymer showing dual photoluminescent emissions in the visible and near-infrared regions. Inorganic Chemistry Communication, 2012, 23, 132-136.                              | 3.9 | 8         |
| 80 | Facile synthesis of palladium nanoparticles encapsulated in amine-functionalized mesoporous<br>metal–organic frameworks and catalytic for dehalogenation of aryl chlorides. Journal of Catalysis,<br>2012, 292, 111-117.                 | 6.2 | 128       |
| 81 | A family of three-dimensional 3d–4f and 4d–4f heterometallic coordination polymers based on mixed isonicotinate and 2-sulfobenzoate ligands: syntheses, structures and photoluminescent properties. Dalton Transactions, 2012, 41, 6195. | 3.3 | 33        |
| 82 | Microwave-Assisted Synthesis of a Series of Lanthanide Metal–Organic Frameworks and Gas Sorption<br>Properties. Inorganic Chemistry, 2012, 51, 1813-1820.                                                                                | 4.0 | 106       |
| 83 | A Guestâ€Dependent Approach to Retain Permanent Pores in Flexible Metal–Organic Frameworks by<br>Cation Exchange. Chemistry - A European Journal, 2012, 18, 7896-7902.                                                                   | 3.3 | 66        |
| 84 | Palladium Nanoparticles Supported on Mixedâ€Linker Metal–Organic Frameworks as Highly Active<br>Catalysts for Heck Reactions. ChemPlusChem, 2012, 77, 106-112.                                                                           | 2.8 | 88        |
| 85 | The fabrication of palladium–pyridyl complex multilayers and their application as a catalyst for the Heck reaction. Journal of Materials Chemistry, 2011, 21, 16467.                                                                     | 6.7 | 40        |
| 86 | Pore-size tuning in double-pillared metal–organic frameworks containing cadmium clusters.<br>CrystEngComm, 2011, 13, 3321.                                                                                                               | 2.6 | 49        |
| 87 | Homochiral Nickel Coordination Polymers Based on Salen(Ni) Metalloligands: Synthesis, Structure,<br>and Catalytic Alkene Epoxidation. Inorganic Chemistry, 2011, 50, 2191-2198.                                                          | 4.0 | 103       |
| 88 | Palladium nanoparticles supported on amino functionalized metal-organic frameworks as highly<br>active catalysts for the Suzuki–Miyaura cross-coupling reaction. Catalysis Communications, 2011, 14,<br>27-31.                           | 3.3 | 162       |
| 89 | Palladium Nanoparticles Encapsulated in a Metal–Organic Framework as Efficient Heterogeneous<br>Catalysts for Direct C2 Arylation of Indoles. Chemistry - A European Journal, 2011, 17, 12706-12712.                                     | 3.3 | 177       |
| 90 | Vinyl polymerization of norbornene with bis(imino)pyridyl nickel(II) complexes. Journal of Applied<br>Polymer Science, 2009, 112, 1486-1495.                                                                                             | 2.6 | 21        |

6

| #   | Article                                                                                                                                                                                                                                                                                                   | IF          | CITATIONS                |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------|
| 91  | Synthesis, characterization and olefin polymerization of the nickel catalysts supported by [N,S]<br>ligands. Journal of Organometallic Chemistry, 2009, 694, 86-90.                                                                                                                                       | 1.8         | 30                       |
| 92  | Synthesis and characterization of half-sandwich iridium(III) and rhodium(III) complexes bearing organochalcogen ligands. Journal of Organometallic Chemistry, 2009, 694, 3376-3380.                                                                                                                       | 1.8         | 23                       |
| 93  | Synthesis, characterization of novel half-sandwich iridium and rhodium complexes containing pyridine-based organochalcogen ligands. Journal of Organometallic Chemistry, 2009, 694, 4008-4013.                                                                                                            | 1.8         | 24                       |
| 94  | Half-Sandwich Chromium(III) Catalysts Bearing Hydroxyindanimine Ligands for Ethylene<br>Polymerization. Organometallics, 2009, 28, 4170-4174.                                                                                                                                                             | 2.3         | 38                       |
| 95  | Half-sandwich chromium(iii) complexes bearing β-ketoiminato and β-diketiminate ligands as catalysts for<br>ethylene polymerization. Dalton Transactions, 2009, , 767-769.                                                                                                                                 | 3.3         | 50                       |
| 96  | Nickel Complexes and Cobalt Coordination Polymers with Organochalcogen (S, Se) Ligands Bearing an<br><i>N</i> â€Methylimidazole Moiety: Syntheses, Structures, and Properties. European Journal of Inorganic<br>Chemistry, 2008, 2008, 4063-4073.                                                         | 2.0         | 60                       |
| 97  | Synthesis, Characterization, and Norbornene Polymerization Behavior of the Half-Sandwich<br>Complexes [Cp* <sub>3</sub> M <sub>3</sub> (1¼ <sub>3</sub> -L)Cl <sub>3</sub> ] and<br>[Cp*M(2-SPyH)Cl <sub>2</sub> ] (M = Ir, M = Rh, [L] <sup>3â^'</sup> = 1,3,5-Triazine-2,4,6-trithiolato, 2-SPy =) Tj B | EfQq1 1 (   | ). <del>7</del> 84314 rg |
| 98  | Syntheses and structures of half-sandwich iridium(iii) and rhodium(iii) complexes with<br>organochalcogen (S, Se) ligands bearing N-methylimidazole and their use as catalysts for norbornene<br>polymerization. Dalton Transactions, 2008, , 5612.                                                       | 3.3         | 97                       |
| 99  | Binuclear Nickel and Copper Complexes with Bridging 2,5-Diamino-1,4-benzoquinonediimines: Synthesis,<br>Structures, and Catalytic Olefin Polymerization. Organometallics, 2008, 27, 259-269.                                                                                                              | 2.3         | 90                       |
| 100 | 1,3,5-Tris(4-methylphenyl)benzene. Acta Crystallographica Section E: Structure Reports Online, 2006,<br>62, o777-o779.                                                                                                                                                                                    | 0.2         | 3                        |
| 101 | Diphenylcarbonohydrazide–phenylsemicarbazide (1/1). Acta Crystallographica Section E: Structure<br>Reports Online, 2006, 62, o1719-o1721.                                                                                                                                                                 | 0.2         | Ο                        |
| 102 | 2,6-Bis[1-(2,6-dimethylphenylimino)ethyl]pyridine. Acta Crystallographica Section E: Structure Reports<br>Online, 2006, 62, o3044-o3045.                                                                                                                                                                  | 0.2         | 12                       |
| 103 | Syntheses of iron, cobalt, chromium, copper and zinc complexes with bulky bis(imino)pyridyl ligands<br>and their catalytic behaviors in ethylene polymerization and vinyl polymerization of norbornene.<br>Journal of Molecular Catalysis A, 2006, 259, 133-141.                                          | 4.8         | 65                       |
| 104 | Syntheses, structures and properties of two Keggin polyoxometalates<br>[H5PCo(4,4′-bipy)Mo11O39][H3PMo12O40]·3.75(4,4′-bipy)·1.5H2O and [H3PMo12O40]·2(4,4′-bip<br>Journal of Molecular Structure, 2006, 783, 168-175.                                                                                    | by3)Â∻1.5H2 | 2@5                      |
| 105 | Syntheses, structures and properties of two molybdenum phosphates [(H20P8MoV12 CdO62)<br>(C4H14N3)2]·2C4H13N3·8H2O and [(H2P2MoVI5 O23) (C4H14N3) (C4H15N3) (H3O)]·3H2O. Journal of<br>Molecular Structure, 2006, 798, 117-125.                                                                           | 3.6         | 17                       |
| 106 | Hydrothermal synthesis and characterization of a novel 3D open framework structure of mixed<br>valence ethylenediamine–vanadium phosphate: [C2H10N2][(HVIVO3)(HVVO2) (PO4)]. Inorganica Chimica<br>Acta, 2006, 359, 3396-3404.                                                                            | 2.4         | 9                        |
| 107 | Hydrothermal syntheses, crystal structures, and properties of two polyoxometalates<br>[Cd(2,2′-bpy)3]2[PMoVMoVI 11O40] and [H3PMo12O40]·3(4,4′-bpy)·4H2O. Structural Chemistry, 2006<br>35-41.                                                                                                            | 9,210,      | 4                        |
| 108 | Hydrothermal synthesis, crystal structure and properties of a 3D-framework polyoxometalate<br>assembly: [Ag(4,4′-bipy)](OH){[Ag(4,4′-bipy)]2[PAgW12O40]}·3.5H2O. Journal of Solid State Chemistry,<br>2006, 179, 1904-1910.                                                                               | 2.9         | 50                       |