Igor B Furtat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9421587/publications.pdf

Version: 2024-02-01

			1039406	887659
	82	397	9	17
1	papers	citations	h-index	g-index
	0.4	0.4	0.4	120
	84	84	84	130
8	all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Robust synchronization of linear dynamical networks with compensation of disturbances. International Journal of Robust and Nonlinear Control, 2014, 24, 2774-2784.	2.1	42
2	Disturbance Compensation With Finite Spectrum Assignment for Plants With Input Delay. IEEE Transactions on Automatic Control, 2018, 63, 298-305.	3.6	35
3	Compensation of disturbances for MIMO systems with quantized output. Automatica, 2015, 60, 239-244.	3.0	28
4	Robust control for a specific class of non-minimum phase dynamical networks. Journal of Computer and Systems Sciences International, 2014, 53, 33-46.	0.2	27
5	Robust control of electric generator in the case of time-dependent mechanical power. Journal of Computer and Systems Sciences International, 2013, 52, 750-758.	0.2	18
6	Robust Synchronization of the Structural Uncertainty Nonlinear Network with Delay & Delay & Disturbances. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 227-232.	0.4	17
7	Finiteâ€time sliding mode stabilization using dirty differentiation and disturbance compensation. International Journal of Robust and Nonlinear Control, 2019, 29, 793-809.	2.1	16
8	Robust control of linear MIMO systems in conditions of parametric uncertainties, external disturbances and signal quantization., 2015,,.		12
9	Robust control of multi-machine power systems with compensation of disturbances. International Journal of Electrical Power and Energy Systems, 2015, 73, 584-590. Modified Backstepping Algorithm with Disturbances Compensation 11 New algorithm for control of	3.3	12
10	nonlinear plants with mismatched disturbances (Sec. 3) was developed under support of RSF (grant) Tj ETQq0 0 for Basic -08-01014, 14-08-01015, Ministry of Education and Science of Russian Federation (Project) Tj ETQq0 0		
11	1056-1061. OUTPUT ADAPTIVE CONTROL FOR PLANTS USING TIME DELAY. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 281-286.	0.4	9
12	Suboptimal Control of Aircraft Lateral Motion1. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 276-282.	0.4	9
13	Robust Control with Compensation of Disturbances for Systems with Quantized Output1. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 730-735.	0.4	9
14	Control of linear time-invariant plants with compensation of measurement noises and disturbances. , 2017, , .		8
15	Modified backstepping algorithm for nonlinear systems. Automation and Remote Control, 2016, 77, 1567-1578.	0.4	7
16	Divergent Stability Conditions of Dynamic Systems. Automation and Remote Control, 2020, 81, 247-257.	0.4	7
17	Synchronization of multiâ€machine power systems under disturbances and measurement errors. International Journal of Adaptive Control and Signal Processing, 2022, 36, 1272-1284.	2.3	7
18	Robust suboptimal output control for a Twin Rotor MIMO System. , 2016, , .		6

#	Article	IF	CITATIONS
19	Control of Dynamical Systems with Given Restrictions on Output Signal with Application to Linear Systems. IFAC-PapersOnLine, 2020, 53, 6384-6389.	0.5	6
20	Practical fixed-time ISS of neutral time-delay systems with application to stabilization by using delays. Automatica, 2022, 143, 110455.	3.0	6
21	Robust control with disturbances compensation for plants with unknown dynamical order., 2014,,.		5
22	Robust static control algorithm for linear objects. Automation and Remote Control, 2015, 76, 446-457.	0.4	5
23	Section 3 is supported by the grant from the Russian Science Foundation (project No. 14-29-00142) in IPME RAS. The proof in Appendix A and simulation results in Section 4 were supported by the Russian Federation President Grant (No. 14.W01.16.6325-MD (MD-6325.2016.8)). The other researches were partially supported by grants of RFBR (16-08-00282, 16-08-00686). Ministry of Education and Science of		

#	Article	IF	Citations
37	An Algorithm to Control Nonlinear Systems in Perturbations and Measurement Noise. Automation and Remote Control, 2018, 79, 1207-1221.	0.4	3
38	A Control Algorithm for an Object with Delayed Input Signal Based on Subpredictors of the Controlled Variable and Disturbance. Automation and Remote Control, 2019, 80, 201-216.	0.4	3
39	Output Control of Linear Time-invariant Systems Under Input and Output Disturbances. IFAC-PapersOnLine, 2020, 53, 4534-4539.	0.5	3
40	Compensation of disturbances in multi-machine power systems caused by perturbation of mechanical input power. , 2015 , , .		2
41	Design of a control algorithm for objects with parametric uncertainty, disturbances, and input signal saturation. Automation and Remote Control, 2017, 78, 2178-2192.	0.4	2
42	Robust suboptimal output stabilization for multi input multi output plants under disturbances. , 2017, , .		2
43	Tracking control algorithms for plants with input time-delays based on state and disturbance predictors and sub-predictors. Journal of the Franklin Institute, 2019, 356, 4496-4512.	1.9	2
44	Delayed Disturbance Attenuation via Measurement Noise Estimation. IEEE Transactions on Automatic Control, 2021, 66, 5546-5553.	3.6	2
45	Stability/Instability Study and Control of Autonomous Dynamical Systems: Divergence Method. IEEE Access, 2021, 9, 23764-23771.	2.6	2
46	Modified Backstepping Algorithm with Disturbances Compensation for Nonlinear MIMO Systems. IFAC-PapersOnLine, 2020, 53, 6012-6018.	0.5	2
47	Feedback Control in the Presence of Input and Output Disturbances. IFAC-PapersOnLine, 2020, 53, 4593-4598.	0.5	2
48	Modified robust backstepping algorithm for plants with time delay. , 2014, , .		1
49	Modified simple adaptive-robust backstepping algorithm. , 2014, , .		1
50	Adaptive Control of Aircraft Lateral Movement in Landing Model 1 New algorithm for control of aircraft (Sec. 3) was developed under support of RNF (grant 14-29-00142) in IPME RAS. The other research were partially supported by grant of Russian Foundation for Basic Research NO 13-08-01014, 14-08-01015, Ministry of Education and Science of Russian Federation (Project 14.250.31.0031) and	0.5	1
51	Government of Russian Federation, Grant 074-U01 IFAC-PapersOnLine, 2015, 48, 211-215. Disturbance compensation in electric generator network control. Journal of Computer and Systems Sciences International, 2016, 55, 115-124.	0.2	1
52	Event-triggered output robust controller., 2017,,. State Feedback Finite Time Sliding Mode Stabilization Using Dirty Differentiation * *The results of		1
53	Section 3 were developed under support of RSF (grant 14-29-00142) in IPME RAS. The results of Section 4 were developed under support of Russian Federation President Grant (No. 14.W01.16.6325-MD) Tj ETQq1 1 0.	784314 rş	gBŢ /Overlo <mark>c</mark>
54	Disturbance Compensation Algorithm Binder Saturation of Control Signal 1 The results of Section 301 were developed under support of RSF (grant 14-29-00142) in IPME RAS. The results of Section 4 were supported solely by the Russian Federation President Grant (No. 14.W01.16.6325-MD (MD-6325.2016.8)). The other research were partially supported by grants of Russian Foundation for Basic Research No. 17-08-01266, 17-08-01728, Ministry of Education and Science of Russian Federation (Project 14.Z50.31.0031) and Gove. IFAC-PapersOnLine, 2017, 50, 3129-3134.	0.5	1

#	ARTICLE Simple Adaptive Algorithm for Plants with Input Delay and Disturbances * *The results of Section 3	IF	CITATIONS
55	was developed under support of RSF (grant 14-29-00142) in IPME RAS. The results of Section 4 and Section 5 were supported solely by the Russian Federation President Grant (No. 14.W01.16.6325-MD) Tj ETQq1	1 0.78431	4 rgBT /Ove
	Basic Research No. 16-08-00282, No. 16-08-00686, 17-08-01266, Ministry of Education and Science of		

#	Article	IF	CITATIONS
73	Discrete-Time State Feedback Control Algorithm for Disturbances Compensation. , 2018, , .		O
74	Finite Time Stabilization of Nonlinear Cascade Systems under Input and Output Disturbances., 2019,,.		0
75	Algorithms for Prediction of Smooth Bounded Signals. , 2019, , .		O
76	Modified Backstepping Algorithm for Plants under Mismatched Disturbances and Varying Time-Delay. , 2019, , .		0
77	Tracking Control of Nonlinear Systems under Input and Output Disturbances with Applications. , 2020, , .		O
78	Output feedback control with disturbance compensation in nonlinear MIMO systems under measurement noises. Journal of Control and Decision, 2022, 9, 35-44.	0.7	0
79	Robust Control of Uncertain Linear Plants in Conditions of Signal Quantization and Time-delay. , 2016,		O
80	Disturbance Compensation and Control Algorithm with Application for Non-linear Twin Rotor MIMO System. Advances in Intelligent Systems and Computing, 2018, , 428-435.	0.5	0
81	Control study of multi-machine power systems under variations of mechanical input power and communication delay. Cybernetics and Physics, 2019, , 235-243.	0.2	O
82	Sampled-data State-feedback Control under Disturbances and Measurement Noisesâ<†., 2020,,.		0