MarÃ-a U Alzueta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9421583/publications.pdf

Version: 2024-02-01

87401 111975 5,608 152 40 67 citations h-index g-index papers 154 154 154 3638 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Interaction of NH3 and NO under combustion conditions. Experimental flow reactor study and kinetic modeling simulation. Combustion and Flame, 2022, 235, 111691.	2.8	21
2	Experimental and simulation study of the high pressure oxidation of dimethyl carbonate. Fuel, 2022, 309, 122154.	3.4	2
3	An experimental and modeling study of acetylene-dimethyl ether mixtures oxidation at high-pressure. Fuel, 2022, 327, 125143.	3.4	4
4	Conversion of NH3 and NH3-NO mixtures in a CO2 atmosphere. A parametric study. Fuel, 2022, 327, 125133.	3.4	13
5	Joint quantification of PAH and oxy-PAH from standard reference materials (urban dust and diesel) Tj ETQq1 1 0.7 Analytical Chemistry, 2021, 101, 1649-1661.	784314 rg 1.8	BT /Overlock 4
6	Experimental and kinetic modeling study of oxidation of acetonitrile. Proceedings of the Combustion Institute, 2021, 38, 575-583.	2.4	13
7	Oxidation of H2S and CH3SH in a jet-stirred reactor: Experiments and kinetic modeling. Fuel, 2021, 283, 119258.	3.4	5
8	New results of H2S oxidation at high pressures. Experiments and kinetic modeling. Fuel, 2021, 285, 119261.	3.4	2
9	Experimental Study of the Pyrolysis of NH ₃ under Flow Reactor Conditions. Energy &	2.5	35
10	Special Issue in Memory of Professor Mário Costa. Energy & Energy & 2021, 35, 6935-6939.	2.5	0
11	Conversion of H2S/O2/NO mixtures at different pressures. Experiments and kinetic modeling. Fuel, 2021, 290, 120060.	3.4	5
12	Exploratory study of polycyclic aromatic hydrocarbons occurrence and distribution in manure pyrolysis products. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105078.	2.6	5
13	Study of the oxidation of ammonia in a flow reactor. Experiments and kinetic modeling simulation. Fuel, 2021, 300, 120979.	3.4	37
14	Study of the conversion of CH4/H2S mixtures at different pressures. Fuel, 2020, 262, 116484.	3.4	7
15	Soot and char formation in the gasification of pig manure in a drop tube reactor. Fuel, 2020, 281, 118738.	3.4	14
16	Effect of H2S on the S-PAH formation during ethylene pyrolysis. Fuel, 2020, 276, 118033.	3.4	1
17	The C2H2 + NO2 reaction: Implications for high pressure oxidation of C2H2/NOx mixtures. Proceedings of the Combustion Institute, 2019, 37, 469-476.	2.4	14
18	H2S conversion in a tubular flow reactor: Experiments and kinetic modeling. Proceedings of the Combustion Institute, 2019, 37, 727-734.	2.4	18

#	Article	IF	Citations
19	The sensitizing effects of NO2 and NO on methane low temperature oxidation in a jet stirred reactor. Proceedings of the Combustion Institute, 2019, 37, 667-675.	2.4	124
20	Reactivity and Physicochemical Properties of the Soot Produced in the Pyrolysis of 2,5-Dimethylfuran and 2-Methylfuran. Energy &	2.5	7
21	Influence of pressure on H2S oxidation. Experiments and kinetic modeling. Fuel, 2019, 258, 116145.	3.4	12
22	Effects of Bath Gas and NO _{<i>x</i>} Addition on <i>n</i> -Pentane Low-Temperature Oxidation in a Jet-Stirred Reactor. Energy & Samp; Fuels, 2019, 33, 5655-5663.	2.5	24
23	Emissions of polycyclic aromatic hydrocarbons from a domestic pellets-fired boiler. Fuel, 2019, 247, 108-112.	3.4	10
24	CH3SH conversion in a tubular flow reactor. Experiments and kinetic modelling. Combustion and Flame, 2019, 203, 23-30.	2.8	16
25	High pressure study of H oxidation and its interaction with NO. International Journal of Hydrogen Energy, 2019, 44, 6325-6332.	3.8	9
26	First detection of a key intermediate in the oxidation of fuel + NO systems: HONO. Chemical Physics Letters, 2019, 719, 22-26.	1.2	21
27	Reactivity of Standard Diesel Particulate Matter with NO ₂ under Different Operating Conditions. Energy & Diese Stands (2019, 33, 11932-11940.	2.5	1
28	Influence of temperature and gas residence time on the formation of polycyclic aromatic hydrocarbons (PAH) during the pyrolysis of ethanol. Fuel, 2019, 236, 820-828.	3.4	11
29	Effect of CO2 atmosphere and presence of NOx (NO and NO2) on the moist oxidation of CO. Fuel, 2019, 236, 615-621.	3.4	5
30	2-methylfuran pyrolysis: Gas-phase modelling and soot formation. Combustion and Flame, 2018, 188, 376-387.	2.8	29
31	An experimental and modeling study of the ignition of dimethyl carbonate in shock tubes and rapid compression machine. Combustion and Flame, 2018, 188, 212-226.	2.8	32
32	High-pressure ethanol oxidation and its interaction with NO. Fuel, 2018, 223, 394-400.	3.4	13
33	Interaction of diesel engine soot with NO2 and O2 at diesel exhaust conditions. Effect of fuel and engine operation mode. Fuel, 2018, 212, 455-461.	3.4	26
34	S-PAH, oxy-PAH and EPA-PAH formation during ethylene-SO2 pyrolysis. Fuel Processing Technology, 2018, 182, 68-76.	3.7	5
35	The inhibiting effect of NO addition on dimethyl ether high-pressure oxidation. Combustion and Flame, 2018, 197, 1-10.	2.8	18
36	Gas and soot formed in the dimethoxymethane pyrolysis. Soot characterization. Fuel Processing Technology, 2018, 179, 369-377.	3.7	19

#	Article	IF	Citations
37	Ethanol as a Fuel Additive: High-Pressure Oxidation of Its Mixtures with Acetylene. Energy &	2.5	10
38	Polycyclic aromatic hydrocarbons (PAHs) and soot formation in the pyrolysis of the butanol isomers. Fuel, 2017, 197, 348-358.	3.4	26
39	Experimental and modeling study of the pyrolysis and combustion of 2-methyl-tetrahydrofuran. Combustion and Flame, 2017, 176, 409-428.	2.8	28
40	Role of Potassium and Calcium on the Combustion Characteristics of Biomass Obtained from Thermogravimetric Experiments. Energy & Samp; Fuels, 2017, 31, 12238-12246.	2.5	14
41	Effects of potassium and calcium on the early stages of combustion of single biomass particles. Fuel, 2017, 209, 787-794.	3.4	39
42	Emissions of polycyclic aromatic hydrocarbons during biomass combustion in a drop tube furnace. Fuel, 2017, 207, 790-800.	3.4	14
43	A study of dimethyl carbonate conversion and its impact to minimize soot and NO emissions. Proceedings of the Combustion Institute, 2017, 36, 3985-3993.	2.4	24
44	Formation of Polycyclic Aromatic Hydrocarbons in the Pyrolysis of 2-Methylfuran at Different Reaction Temperatures. Combustion Science and Technology, 2016, 188, 611-622.	1.2	4
45	Influence of the Temperature and 2,5-Dimethylfuran Concentration on Its Sooting Tendency. Combustion Science and Technology, 2016, 188, 651-666.	1.2	25
46	Interaction of Soot–SO ₂ : Experimental and Kinetic Analysis. Combustion Science and Technology, 2016, 188, 482-491.	1.2	8
47	Effect of the Presence of Hydrogen Sulfide on the Formation of Light Gases, Soot, and PAH during the Pyrolysis of Ethylene. Energy & Energ	2.5	6
48	Pyrolysis of dimethyl carbonate: PAH formation. Journal of Analytical and Applied Pyrolysis, 2016, 122, 524-530.	2.6	13
49	Experimental and Kinetic Modeling Study of C ₂ H ₂ Oxidation at High Pressure. International Journal of Chemical Kinetics, 2016, 48, 724-738.	1.0	67
50	Importance of Vanadium-Catalyzed Oxidation of SO ₂ to SO ₃ in Two-Stroke Marine Diesel Engines. Energy & Samp; Fuels, 2016, 30, 6098-6102.	2.5	13
51	Dimethoxymethane Oxidation in a Flow Reactor. Combustion Science and Technology, 2016, 188, 719-729.	1.2	29
52	Influence of dimethyl ether addition on the oxidation of acetylene in the absence and presence of NO. Fuel, 2016, 183, 1-8.	3.4	15
53	Sooting propensity of dimethyl carbonate, soot reactivity and characterization. Fuel, 2016, 183, 64-72.	3.4	41
54	Ethylene–SO2 interaction under sooting conditions: PAH formation. Fuel, 2016, 184, 966-972.	3.4	16

#	Article	IF	CITATIONS
55	2-methylfuran Oxidation in the Absence and Presence of NO. Flow, Turbulence and Combustion, 2016, 96, 343-362.	1.4	12
56	Formation of NO from N ₂ /O ₂ Mixtures in a Flow Reactor: Toward an Accurate Prediction of Thermal NO. International Journal of Chemical Kinetics, 2015, 47, 518-532.	1.0	66
57	Interactions of HCN with NO in a CO ₂ Atmosphere Representative of Oxy-fuel Combustion Conditions. Energy & En	2.5	17
58	Pyrolysis and Char Characterization of Refuse-Derived Fuel Components. Energy & Ener	2.5	14
59	CS2 and COS conversion under different combustion conditions. Combustion and Flame, 2015, 162, 2119-2127.	2.8	48
60	High Pressure Oxidation of Dimethoxymethane. Energy & Samp; Fuels, 2015, 29, 3507-3517.	2.5	48
61	An experimental and modeling study of the combustion of tetrahydrofuran. Combustion and Flame, 2015, 162, 1899-1918.	2.8	72
62	Experimental and kinetic modeling study of the oxy-fuel oxidation of natural gas, CH4 and C2H6. Fuel, 2015, 160, 404-412.	3.4	18
63	Impact of SO2 on the formation of soot from ethylene pyrolysis. Fuel, 2015, 159, 550-558.	3.4	14
64	Pyrolysis and combustion chemistry of tetrahydropyran: Experimental and modeling study. Combustion and Flame, 2015, 162, 4283-4303.	2.8	19
65	Novel aspects in the pyrolysis and oxidation of 2,5-dimethylfuran. Proceedings of the Combustion Institute, 2015, 35, 1717-1725.	2.4	37
66	High-Pressure Study of Methyl Formate Oxidation and Its Interaction with NO. Energy & Dels, 2014, 28, 6107-6115.	2.5	28
67	Interaction between 2,5-Dimethylfuran and Nitric Oxide: Experimental and Modeling Study. Energy & Lamp; Fuels, 2014, 28, 4193-4198.	2.5	20
68	Kinetic Modeling Study of Polycyclic Aromatic Hydrocarbons and Soot Formation in Acetylene Pyrolysis. Energy & Samp; Fuels, 2014, 28, 1489-1501.	2.5	70
69	Impact of nitrogen oxides (NO, NO2, N2O) on the formation of soot. Combustion and Flame, 2014, 161, 280-287.	2.8	34
70	An experimental and modeling study of the influence of flue gases recirculated on ethylene conversion. Combustion and Flame, 2014, 161, 2288-2296.	2.8	8
71	Experimental and Kinetic Modeling Study of Methanol Ignition and Oxidation at High Pressure. International Journal of Chemical Kinetics, 2013, 45, 283-294.	1.0	55
72	Influence of the Oxygen Presence on Polycyclic Aromatic Hydrocarbon (PAH) Formation from Acetylene Pyrolysis under Sooting Conditions. Energy & Energy & 2013, 27, 7081-7088.	2.5	18

#	Article	IF	CITATIONS
73	Measurement and modeling of sulfur trioxide formation in a flow reactor under post-flame conditions. Combustion and Flame, 2013, 160, 1142-1151.	2.8	75
74	Polycyclic aromatic hydrocarbons (PAH), soot and light gases formed in the pyrolysis of acetylene at different temperatures: Effect of fuel concentration. Journal of Analytical and Applied Pyrolysis, 2013, 103, 126-133.	2.6	58
75	Oxidation behavior of particulate matter sampled from the combustion zone of a domestic pellet-fired boiler. Fuel Processing Technology, 2013, 116, 201-208.	3.7	5
76	Quantification of polycyclic aromatic hydrocarbons (PAHs) found in gas and particle phases from pyrolytic processes using gas chromatography–mass spectrometry (GC–MS). Fuel, 2013, 107, 246-253.	3.4	72
77	Oxidation of methyl formate and its interaction with nitric oxide. Combustion and Flame, 2013, 160, 853-860.	2.8	17
78	Characterization of Soot. Green Energy and Technology, 2013, , 333-362.	0.4	16
79	Formation and Characterization of Polyaromatic Hydrocarbons. Green Energy and Technology, 2013, , 283-302.	0.4	1
80	Tubular Flow Reactors. Green Energy and Technology, 2013, , 211-230.	0.4	2
81	Effect of Recirculation Gases on Soot Formed from Ethylene Pyrolysis. Combustion Science and Technology, 2012, 184, 980-994.	1.2	18
82	Experimental and Kinetic Study of the Interaction of a Commercial Soot with NO at High Temperature. Combustion Science and Technology, 2012, 184, 1191-1206.	1.2	18
83	Polycyclic Aromatic Hydrocarbon (PAH) and Soot Formation in the Pyrolysis of Acetylene and Ethylene: Effect of the Reaction Temperature. Energy & Samp; Fuels, 2012, 26, 4823-4829.	2.5	63
84	Soot Reactivity in Conventional Combustion and Oxy-fuel Combustion Environments. Energy & Ene	2.5	24
85	Gas and soot products formed in the pyrolysis of acetylene mixed with methanol, ethanol, isopropanol or n-butanol. Energy, 2012, 43, 37-46.	4. 5	72
86	Formation of PAH and soot during acetylene pyrolysis at different gas residence times and reaction temperatures. Energy, 2012, 43, 30-36.	4.5	83
87	Experimental and computational study of methane mixtures pyrolysis in a flow reactor under atmospheric pressure. Energy, 2012, 43, 103-110.	4.5	40
88	Influence of water vapor addition on soot oxidation at high temperature. Energy, 2012, 43, 55-63.	4.5	34
89	Special issue dedicated to "Cleaner Combustion 2011―conference. Energy, 2012, 43, 2-3.	4.5	0
90	Experimental study on the effect of different CO2 concentrations on soot and gas products from ethylene thermal decomposition. Fuel, 2012, 91, 307-312.	3.4	29

#	Article	IF	Citations
91	Characterization and reactivity with NO/O2 of the soot formed in the pyrolysis of acetylene–ethanol mixtures. Journal of Analytical and Applied Pyrolysis, 2012, 94, 68-74.	2.6	7
92	Experimental and Kinetic Study at High Temperatures of the NO Reduction over Eucalyptus Char Produced at Different Heating Rates. Energy & Energy & 2011, 25, 1024-1033.	2.5	26
93	Pyrolysis of Ethanol: Gas and Soot Products Formed. Industrial & Engineering Chemistry Research, 2011, 50, 4412-4419.	1.8	44
94	SO2 effects on CO oxidation in a CO2 atmosphere, characteristic of oxy-fuel conditions. Combustion and Flame, 2011, 158, 48-56.	2.8	52
95	Effect of different concentration levels of CO2 and H2O on the oxidation of CO: Experiments and modeling. Proceedings of the Combustion Institute, 2011, 33, 317-323.	2.4	80
96	High pressure oxidation of C2H4/NO mixtures. Proceedings of the Combustion Institute, 2011, 33, 449-457.	2.4	38
97	Influence of the concentration of ethanol and the interaction of compounds in the pyrolysis of acetylene and ethanol mixtures. Fuel, 2011, 90, 844-849.	3.4	19
98	An experimental parametric study of gas reburning under conditions of interest for oxy-fuel combustion. Fuel Processing Technology, 2011, 92, 582-589.	3.7	39
99	Effect of operating conditions on NO reduction by acetylene–ethanol mixtures. Fuel Processing Technology, 2010, 91, 1204-1211.	3.7	19
100	HCN oxidation in an O2/CO2 atmosphere: An experimental and kinetic modeling study. Combustion and Flame, 2010, 157, 267-276.	2.8	114
101	Oxidation of Acetone and Its Interaction with Nitric Oxide. Energy & Samp; Fuels, 2010, 24, 1511-1520.	2.5	16
102	Effect of Ethanol, Dimethylether, and Oxygen, When Mixed with Acetylene, on the Formation of Soot and Gas Products. Industrial & Engineering Chemistry Research, 2010, 49, 6772-6779.	1.8	25
103	Gas and soot products formed in the pyrolysis of acetylene–ethanol blends under flow reactor conditions. Fuel Processing Technology, 2009, 90, 496-503.	3.7	43
104	Acetylene soot reaction with NO in the presence of CO. Journal of Hazardous Materials, 2009, 166, 1389-1394.	6.5	13
105	Experimental and kinetic modeling study of C2H4 oxidation at high pressure. Proceedings of the Combustion Institute, 2009, 32, 367-375.	2.4	66
106	An experimental and modeling study of the oxidation of acetylene in a flow reactor. Combustion and Flame, 2008, 152, 377-386.	2.8	58
107	The oxidation of hydrogen cyanide and related chemistry. Progress in Energy and Combustion Science, 2008, 34, 1-46.	15.8	305
108	Characterization of Biomass Chars Formed under Different Devolatilization Conditions: Differences between Rice Husk and Eucalyptus. Energy & Samp; Fuels, 2008, 22, 1275-1284.	2.5	151

#	Article	IF	Citations
109	Influence of the NO Concentration and the Presence of Oxygen in the Acetylene Soot Reaction with NO. Energy & Samp; Fuels, 2008, 22, 284-290.	2.5	13
110	Oxidation Kinetics of Eucalyptus Chars Produced at Low and High Heating Rates. Energy & Energ	2.5	10
111	Oxidation of Acetyleneâ^Ethanol Mixtures and Their Interaction with NO. Energy & Samp; Fuels, 2008, 22, 3814-3823.	2.5	35
112	A Comparison of Acetylene Soot and Two Different Carbon Blacks: Reactivity to Oxygen and NO. International Journal of Chemical Reactor Engineering, 2007, 5, .	0.6	5
113	Reactivity Towards O2 and NO of the Soot Formed from Ethylene Pyrolysis at Different Temperatures. International Journal of Chemical Reactor Engineering, 2007, 5, .	0.6	4
114	Influence of Different Operation Conditions on Soot Formation from C2H2 Pyrolysis. Industrial & Engineering Chemistry Research, 2007, 46, 7550-7560.	1.8	40
115	Influence of Reactant Mixing in a Laminar Flow Reactor:Â The Case of Gas Reburning. 2. Modelling Study. Industrial & Study. Engineering Chemistry Research, 2007, 46, 3528-3537.	1.8	1
116	Oxidation of Acetylene Soot: Influence of Oxygen Concentration. Energy & En	2.5	18
117	Influence of Reactant Mixing in a Laminar Flow Reactor:Â The Case of Gas Reburning. 1. Experimental Study. Industrial & Engineering Chemistry Research, 2007, 46, 3520-3527.	1.8	11
118	Influence of the temperature on the properties of the soot formed from C2H2 pyrolysis. Chemical Engineering Journal, 2007, 127, 1-9.	6.6	46
119	Soot formation from C2H2 and C2H4 pyrolysis at different temperatures. Journal of Analytical and Applied Pyrolysis, 2007, 79, 244-251.	2.6	82
120	An experimental study of the soot formed in the pyrolysis of acetylene. Journal of Analytical and Applied Pyrolysis, 2005, 74, 486-493.	2.6	51
121	Pyrolysis of eucalyptus at different heating rates: studies of char characterization and oxidative reactivity. Journal of Analytical and Applied Pyrolysis, 2005, 74, 307-314.	2.6	162
122	An Experimental and Computational Fluid Dynamics (CFD) Simulation Study of Reburning under Laboratory Turbulent Mixing Conditions. Energy & Energy & 19, 833-841.	2.5	3
123	An Augmented Reduced Mechanism for Methane Combustion. Energy & Samp; Fuels, 2004, 18, 619-627.	2.5	17
124	Oxidation of formaldehyde and its interaction with nitric oxide in a flow reactor. Combustion and Flame, 2003, 132, 629-638.	2.8	74
125	Formation and Destruction of CH2O in the Exhaust System of a Gas Engine. Environmental Science & Envir	4.6	23
126	Pyridine conversion in a flow reactor and its interaction with nitric oxide. Combustion Science and Technology, 2002, 174, 151-169.	1.2	20

#	Article	IF	CITATIONS
127	Ethanol Oxidation and Its Interaction with Nitric Oxide. Energy &	2.5	63
128	An Approach to the Analysis of Mixing in Reactive Systems. Chemical Engineering and Technology, 2002, 25, 417-419.	0.9	2
129	An augmented reduced mechanism for the reburning processã [*] †. Fuel, 2002, 81, 2263-2275.	3.4	16
130	A STUDY OF PYRROLE OXIDATION UNDER FLOW REACTOR CONDITIONS. Combustion Science and Technology, 2001, 172, 123-139.	1.2	24
131	Methanol Oxidation and Its Interaction with Nitric Oxide. Energy &	2.5	58
132	Inhibition and sensitization of fuel oxidation by SO2. Combustion and Flame, 2001, 127, 2234-2251.	2.8	150
133	Experimental and kinetic modeling study of the oxidation of benzene. International Journal of Chemical Kinetics, 2000, 32, 498-522.	1.0	121
134	Theoretical study of the influence of mixing in the SNCR process. Comparison with pilot scale data. Chemical Engineering Science, 2000, 55, 5321-5332.	1.9	29
135	Impact of New Findings Concerning Urea Thermal Decomposition on the Modeling of the Urea-SNCR Process. Energy & Decomposition on the Modeling of the Urea-SNCR Process. Energy & Decomposition on the Modeling of the Urea-SNCR Process.	2.5	22
136	Nitric Oxide Reduction by Non-hydrocarbon Fuels. Implications for Reburning with Gasification Gases. Energy & E	2.5	107
137	Oxidation of Dimethyl Ether and its Interaction with Nitrogen Oxides. Israel Journal of Chemistry, 1999, 39, 73-86.	1.0	63
138	Kinetic Modeling of Hydrocarbon/Nitric Oxide Interactions in a Flow Reactor. Combustion and Flame, 1998, 115, 1-27.	2.8	475
139	Parabenzoquinone pyrolysis and oxidation in a flow reactor. International Journal of Chemical Kinetics, 1998, 30, 683-697.	1.0	30
140	The recombination of hydrogen atoms with nitric oxide at high temperatures. Proceedings of the Combustion Institute, 1998, 27, 219-226.	0.3	41
141	Modeling Low-Temperature Gas Reburning. NOxReduction Potential and Effects of Mixing. Energy & Logical Republic	2.5	47
142	Interactions between Nitric Oxide and Urea under Flow Reactor Conditions. Energy & E	2.5	40
143	Laboratory Study of the CO/NH3/NO/O2System:Â Implications for Hybrid Reburn/SNCR Strategies. Energy & Fuels, 1997, 11, 716-723.	2.5	63
144	Dilution and Stoichiometry Effects on Gas Reburning:Â An Experimental Study. Industrial & Engineering Chemistry Research, 1997, 36, 2440-2444.	1.8	17

#	Article	lF	CITATION
145	Low temperature interactions between hydrocarbons and nitric oxide: An experimental study. Combustion and Flame, 1997, 109, 25-36.	2.8	111
146	Evaluation of the use of different hydrocarbon fuels for gas reburning. Fuel, 1997, 76, 1401-1407.	3.4	50
147	NOx EMISSION REDUCTION IN BIOMASS COMBUSTION SYSTEMS. , 1996, , 1717-1722.		0
148	Experimental study and modeling of the influence of the inlet no concentration in the natural gas reburning process. Coal Science and Technology, 1995, 24, 1771-1774.	0.0	3
149	Experimental study and modelling of the burnout zone in the natural gas reburning process. Chemical Engineering Science, 1995, 50, 2579-2587.	1.9	15
150	Experimental Study of the Influence of the Operating Variables on Natural Gas Reburning Efficiency. Industrial & Engineering Chemistry Research, 1995, 34, 4531-4539.	1.8	42
151	Simplified Kinetic Model of the Chemistry in the Reburning Zone Using Natural Gas. Industrial & Samp; Engineering Chemistry Research, 1995, 34, 4540-4548.	1.8	23
152	Influence of the Temperature and Oxygen Concentration on NOx Reduction In The Natural Gas Reburning Process. Industrial & Damp; Engineering Chemistry Research, 1994, 33, 2846-2852.	1.8	64