Pierre-Alain Monnard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9421495/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Membrane self-assembly processes: Steps toward the first cellular life. The Anatomical Record, 2002, 268, 196-207.	2.3	243
2	Oparin's Reactions Revisited: Enzymic Synthesis of Poly(adenylic acid) in Micelles and Self-Reproducing Vesicles. Journal of the American Chemical Society, 1994, 116, 7541-7547.	6.6	240
3	Influence of Ionic Inorganic Solutes on Self-Assembly and Polymerization Processes Related to Early Forms of Life: Implications for a Prebiotic Aqueous Medium. Astrobiology, 2002, 2, 139-152.	1.5	211
4	Eutectic Phase Polymerization of Activated Ribonucleotide Mixtures Yields Quasi-Equimolar Incorporation of Purine and Pyrimidine Nucleobases. Journal of the American Chemical Society, 2003, 125, 13734-13740.	6.6	145
5	Entrapment of nucleic acids in liposomes. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1329, 39-50.	1.4	129
6	Current Ideas about Prebiological Compartmentalization. Life, 2015, 5, 1239-1263.	1.1	125
7	Eutectic Phases in Ice Facilitate Nonenzymatic Nucleic Acid Synthesis. Astrobiology, 2001, 1, 271-281.	1.5	113
8	Nutrient uptake by protocells: a liposome model system. Origins of Life and Evolution of Biospheres, 2001, 31, 147-155.	0.8	83
9	Preparation of Vesicles from Nonphospholipid Amphiphiles. Methods in Enzymology, 2003, 372, 133-151.	0.4	70
10	Liposome-entrapped Polymerases as Models for Microscale/Nanoscale Bioreactors. Journal of Membrane Biology, 2003, 191, 87-97.	1.0	69
11	Nucleobase Mediated, Photocatalytic Vesicle Formation from an Ester Precursor. Journal of the American Chemical Society, 2009, 131, 931-933.	6.6	65
12	Prebiotically relevant mixed fatty acid vesicles support anionic solute encapsulation and photochemically catalyzed trans-membrane charge transport. Chemical Science, 2011, 2, 661.	3.7	62
13	Models of primitive cellular life: polymerases and templates in liposomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1741-1750.	1.8	52
14	Formation of RNA Phosphodiester Bond by Histidine ontaining Dipeptides. ChemBioChem, 2013, 14, 217-223.	1.3	47
15	Metal-ion catalyzed polymerization in the eutectic phase in water–ice: A possible approach to template-directed RNA polymerization. Journal of Inorganic Biochemistry, 2008, 102, 1104-1111.	1.5	44
16	Stable Vesicles Composed of Monocarboxylic or Dicarboxylic Fatty Acids and Trimethylammonium Amphiphiles. Langmuir, 2011, 27, 14078-14090.	1.6	42
17	Self-Assembly of Phosphate Amphiphiles in Mixtures of Prebiotically Plausible Surfactants. Astrobiology, 2014, 14, 462-472.	1.5	41
18	Enzymatic reactions in liposomes using the detergent-induced liposome loading method. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1416, 57-68.	1.4	40

#	Article	IF	CITATIONS
19	Primordial membranes: more than simple container boundaries. Current Opinion in Chemical Biology, 2017, 40, 78-86.	2.8	36
20	Eutectic Phase in Water-Ice: A Self-Assembled Environment Conducive to Metal-Catalyzed Non-Enzymatic RNA Polymerization. Chemistry and Biodiversity, 2008, 5, 1521-1539.	1.0	30
21	Permeability-driven selection in a semi-empirical protocell model: the roots of prebiotic systems evolution. Scientific Reports, 2017, 7, 3141.	1.6	30
22	Vesicle Self-Assembly of Monoalkyl Amphiphiles under the Effects of High Ionic Strength, Extreme pH, and High Temperature Environments. Langmuir, 2018, 34, 15560-15568.	1.6	30
23	Interactions between Catalysts and Amphiphilic Structures and their Implications for a Protocell Model. ChemPhysChem, 2011, 12, 828-835.	1.0	26
24	Functional Assemblies Emerging in Complex Mixtures of Peptides and Nucleic Acid–Peptide Chimeras. Chemistry - A European Journal, 2018, 24, 10128-10135.	1.7	24
25	Viability Conditions for a Compartmentalized Protometabolic System: A Semi-Empirical Approach. PLoS ONE, 2012, 7, e39480.	1.1	23
26	Dynamics of fatty acid vesicles in response to pH stimuli. Soft Matter, 2015, 11, 6327-6334.	1.2	23
27	Organic Nano-Compartments as Biomimetic Reactors and Protocells. Current Nanoscience, 2008, 4, 71-87.	0.7	21
28	Catalysis in abiotic structured media: an approach to selective synthesis of biopolymers. Cellular and Molecular Life Sciences, 2005, 62, 520-534.	2.4	19
29	Glass Microsphereâ€Supported Giant Vesicles for the Observation of Selfâ€Reproduction of Lipid Boundaries. Angewandte Chemie - International Edition, 2018, 57, 282-286.	7.2	16
30	Decreased Solute Entrapment in 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine Liposomes Prepared by Freeze/Thaw in the Presence of Physiological Amounts of Monovalent Salts. Langmuir, 1999, 15, 7504-7509.	1.6	15
31	Primitive Membrane Formation, Characteristics and Roles in the Emergent Properties of a Protocell. Entropy, 2011, 13, 466-484.	1.1	15
32	Non-enzymatic Polymerization of Nucleic Acids from Monomers: Monomer Self- Condensation and Template-Directed Reactions. Current Organic Synthesis, 2012, 9, 735-763.	0.7	15
33	Functionalization of Fatty Acid Vesicles through Newly Synthesized Bolaamphiphile–DNA Conjugates. Bioconjugate Chemistry, 2014, 25, 1678-1688.	1.8	14
34	Taming Prebiotic Chemistry: The Role of Heterogeneous and Interfacial Catalysis in the Emergence of a Prebiotic Catalytic/Information Polymer System. Life, 2016, 6, 40.	1.1	12
35	On the Emergence of a Proto-Metabolism and the Assembly of Early Protocells. Elements, 2016, 12, 419-424.	0.5	12
36	Question 9: Prospects for the Construction of Artificial Cells or Protocells. Origins of Life and Evolution of Biospheres, 2007, 37, 469-472.	0.8	7

#	Article	IF	CITATIONS
37	Question 5: Does the RNA-World Still Retain its Appeal After 40ÂYears of Research?. Origins of Life and Evolution of Biospheres, 2007, 37, 387-390.	0.8	6
38	Sliding over the Blocks in Enzyme-Free RNA Copying – One-Pot Primer Extension in Ice. PLoS ONE, 2013, 8, e75617.	1.1	6
39	The origin of life and the potential role of soaps. Lipid Technology, 2016, 28, 88-92.	0.3	5
40	Chemical systems, chemical contiguity and the emergence of life. Beilstein Journal of Organic Chemistry, 2017, 13, 1551-1563.	1.3	5
41	Phototriggered DNA Phosphoramidate Ligation in a Tandem 5′-Amine Deprotection/3′-Imidazole Activated Phosphate Coupling Reaction. Bioconjugate Chemistry, 2012, 23, 2014-2019.	1.8	4
42	Bottom–Up Protocell Design: Gaining Insights in the Emergence of Complex Functions. , 2013, , 81-94.		3
43	Assembly of a Minimal Protocell. , 2008, , 124-155.		3
44	Membrane Self-Assembly Processes: Steps Toward the First Cellular Life. , 2011, , 123-151.		2
45	Synthesis of Lipophilic Guanine N-9 Derivatives: Membrane Anchoring of Nucleobases Tailored to Fatty Acid Vesicles. Bioconjugate Chemistry, 2017, 28, 1893-1905.	1.8	2
46	Glass Microsphere upported Giant Vesicles for the Observation of Selfâ€Reproduction of Lipid Boundaries. Angewandte Chemie, 2018, 130, 288-292.	1.6	1
47	Template-Directed Polymerization. , 2011, , 1651-1653.		0
48	Lipid Protocells. , 2013, , 1280-1286.		0
49	Template-Directed Polymerization. , 2014, , 1-3.		0
50	Template-Directed Polymerization. , 2015, , 2470-2472.		0