
## Jose Simo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9420724/publications.pdf Version: 2024-02-01



LOSE SIMO

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Interference-Aware Schedulability Analysis and Task Allocation for Multicore Hard Real-Time Systems.<br>Electronics (Switzerland), 2022, 11, 1313.                                                          | 1.8 | 2         |
| 2  | Magnetic Trails: A Novel Artificial Pheromone for Swarm Robotics in Outdoor Environments.<br>Computation, 2022, 10, 98.                                                                                     | 1.0 | 2         |
| 3  | The Role of Mixed Criticality Technology in Industry 4.0. Electronics (Switzerland), 2021, 10, 226.                                                                                                         | 1.8 | 6         |
| 4  | Software Components for Smart Industry Based on Microservices: A Case Study in pH Control Process for the Beverage Industry. Electronics (Switzerland), 2021, 10, 763.                                      | 1.8 | 2         |
| 5  | Approach to an Emulation Model to Evaluate the Behavior and Impact of Microgrids in Isolated Communities. Energies, 2021, 14, 5316.                                                                         | 1.6 | Ο         |
| 6  | Integer Programming Techniques for Static Scheduling of Hard Real-Time Systems. IEEE Access, 2020, 8, 170389-170403.                                                                                        | 2.6 | 6         |
| 7  | Distributed Architecture to Integrate Sensor Information: Object Recognition for Smart Cities.<br>Sensors, 2020, 20, 112.                                                                                   | 2.1 | 14        |
| 8  | Object Recognition: Distributed Architecture Based on Heterogeneous Devices to Integrate Sensor<br>Information. Advances in Intelligent Systems and Computing, 2020, , 181-188.                             | 0.5 | 0         |
| 9  | Hypervisor-Based Multicore Feedback Control of Mixed-Criticality Systems. IEEE Access, 2018, 6, 50627-50640.                                                                                                | 2.6 | 16        |
| 10 | CKMultipeer: Connecting Devices Without Caring about the Network. Advances in Intelligent Systems and Computing, 2018, , 189-196.                                                                           | 0.5 | 1         |
| 11 | Distributed Real-time Control Architecture for ROS-based Modular Robots. IFAC-PapersOnLine, 2017, 50, 11233-11238.                                                                                          | 0.5 | 11        |
| 12 | Smart Resource Integration on ROS-Based Systems: Highly Decoupled Resources for a Modular and Scalable Robot Development. Advances in Intelligent Systems and Computing, 2016, , 331-338.                   | 0.5 | 0         |
| 13 | Dynamic Reconfiguration of a RGBD Sensor Based on QoS and QoC Requirements in Distributed Systems. Sensors, 2015, 15, 18080-18101.                                                                          | 2.1 | 15        |
| 14 | Control kernel in smart factory environments: Smart resources integration. , 2015, , .                                                                                                                      |     | 13        |
| 15 | Distributed Sensor Architecture for Intelligent Control that Supports Quality of Control and Quality of Service. Sensors, 2015, 15, 4700-4733.                                                              | 2.1 | 4         |
| 16 | Optimizations on semantic environment management: An application for humanoid robot home assistance. , 2014, , .                                                                                            |     | 0         |
| 17 | Performance and Results of the Triple Buffering Built-In in a Raspberry PI to Optimize the Distribution of Information from a Smart Sensor. Advances in Intelligent Systems and Computing, 2014, , 279-286. | 0.5 | 2         |
| 18 | Smart video sensors for 3D scene reconstruction of large infrastructures. Multimedia Tools and Applications, 2014, 73, 977-993.                                                                             | 2.6 | 4         |

Jose Simo

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Smart device definition and application on embedded system: performance and optimi-zation on a RGBD sensor. Advances in Distributed Computing and Artificial Intelligence Journal, 2014, 3, 46-55. | 1.1 | 3         |
| 20 | A Hierarchical Hybrid Architecture for Mission-Oriented Robot Control. Advances in Intelligent<br>Systems and Computing, 2014, , 363-380.                                                          | 0.5 | 2         |
| 21 | Control kernel based adaptive control implementation. ACM SIGBED Review, 2013, 10, 24-28.                                                                                                          | 1.8 | 1         |
| 22 | A Reliability-Based Particle Filter for Humanoid Robot Self-Localization in RoboCup Standard Platform<br>League. Sensors, 2013, 13, 14954-14983.                                                   | 2.1 | 7         |
| 23 | Video Sensor Architecture for Surveillance Applications. Sensors, 2012, 12, 1509-1528.                                                                                                             | 2.1 | 16        |
| 24 | High performance dynamic voltage/frequency scaling algorithm for real-time dynamic load management. Journal of Systems and Software, 2012, 85, 906-919.                                            | 3.3 | 10        |
| 25 | Relationship between Quality of Control and Quality of Service in Mobile Robot Navigation. Advances in Intelligent and Soft Computing, 2012, , 557-564.                                            | 0.2 | 3         |
| 26 | μDDS: A Middleware for Real-time Wireless Embedded Systems. Journal of Intelligent and Robotic<br>Systems: Theory and Applications, 2011, 64, 489-503.                                             | 2.0 | 10        |
| 27 | Formal Specification and Design Techniques for Wireless Sensor and Actuator Networks. Sensors, 2011, 11, 1059-1077.                                                                                | 2.1 | 14        |
| 28 | Automatic Population of Scenarios with Augmented Virtuality. , 2011, , 347-353.                                                                                                                    |     | 2         |
| 29 | A Survey on Quality of Service Support on Middleware-Based Distributed Messaging Systems Used in<br>Multi Agent Systems. Advances in Intelligent and Soft Computing, 2011, , 77-84.                | 0.2 | 1         |
| 30 | Embedded low-level video processing for surveillance purposes. , 2010, , .                                                                                                                         |     | 5         |
| 31 | A constant-time region-based memory allocator for embedded systems with unpredictable length array generation. , 2010, , .                                                                         |     | 1         |
| 32 | Control Co-design: Algorithms and Their Implementation. Lecture Notes in Computer Science, 2010, ,<br>19-40.                                                                                       | 1.0 | 0         |
| 33 | Multi-Agent Architecture with Support to Quality of Service and Quality of Control. Lecture Notes in Computer Science, 2010, , 137-144.                                                            | 1.0 | 0         |
| 34 | Procedimiento de Diseño para Minimizar el Consumo de Potencia y las Latencias en WSAN. RIAI - Revista<br>Iberoamericana De Automatica E Informatica Industrial, 2010, 7, 95-110.                   | 0.6 | 0         |
| 35 | QoS-Based Middleware Architecture for Distributed Control Systems. Advances in Soft Computing, 2009, , 587-595.                                                                                    | 0.4 | 7         |
| 36 | From the Queue to the Quality of Service Policy: A Middleware Implementation. Lecture Notes in Computer Science, 2009, , 432-437.                                                                  | 1.0 | 6         |

Jose Simo

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Agent-based distributed architecture for mobile robot control. Engineering Applications of Artificial<br>Intelligence, 2008, 21, 805-823.                                                                                            | 4.3 | 63        |
| 38 | Wireless Sensor and Actuator Networks: Charecterization and case study for confined spaces<br>healthcare applications. Proceedings of the International Multiconference on Computer Science and<br>Information Technology, 2008, , . | 0.0 | 6         |
| 39 | Advanced Distributed Architecture for a Small Biped Robot Control. , 2006, , .                                                                                                                                                       |     | 4         |
| 40 | CONTROL KERNEL: A KEY CONCEPT IN EMBEDDED CONTROL SYSTEMS. IFAC Postprint Volumes IPPV /<br>International Federation of Automatic Control, 2006, 39, 330-335.                                                                        | 0.4 | 6         |
| 41 | Differentiating walls from corners using the amplitude of ultrasonic echoes. Robotics and Autonomous Systems, 2005, 50, 13-25.                                                                                                       | 3.0 | 17        |
| 42 | Using infrared sensors for distance measurement in mobile robots. Robotics and Autonomous Systems, 2002, 40, 255-266.                                                                                                                | 3.0 | 190       |
| 43 | Communications structure for sensory data in mobile robots. Engineering Applications of Artificial<br>Intelligence, 2002, 15, 341-350.                                                                                               | 4.3 | 16        |
| 44 | Flexible real-time mobile robotic architecture based on behavioural models. Engineering Applications of Artificial Intelligence, 2001, 14, 685-702.                                                                                  | 4.3 | 18        |
| 45 | Adaptive QoS Management System for Autonomous Vehicles. IFAC Postprint Volumes IPPV /<br>International Federation of Automatic Control, 2000, 33, 143-150.                                                                           | 0.4 | 0         |
| 46 | Flexible Real-Time Architecture for Hybrid Mobile Robotic Applications. IFAC Postprint Volumes IPPV /<br>International Federation of Automatic Control, 2000, 33, 271-278.                                                           | 0.4 | 0         |
| 47 | Distributed real time architecture for small biped robot YABIRO , 0, , .                                                                                                                                                             |     | 4         |