Ibra S Fancher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9420688/publications.pdf

Version: 2024-02-01

713332 687220 27 472 13 21 h-index citations g-index papers 27 27 27 699 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The physiological benefits of sitting less and moving more: Opportunities for future research. Progress in Cardiovascular Diseases, 2022, 73, 61-66.	1.6	7
2	Cholesterol-Induced Suppression of Endothelial Kir Channels Is a Driver of Impairment of Arteriolar Flow-Induced Vasodilation in Humans. Hypertension, 2022, 79, 126-138.	1.3	11
3	Differential effects of obesity on visceral versus subcutaneous adipose arteries: role of shear-activated Kir2.1 and alterations to the glycocalyx. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H156-H166.	1.5	10
4	Obesity as a premature aging phenotype — implications for sarcopenic obesity. GeroScience, 2022, 44, 1393-1405.	2.1	22
5	Endothelial inwardly rectifying potassium channels regulates receptorâ€mediated vasodilation via PI3K/Akt/eNOS signal pathway. FASEB Journal, 2022, 36, .	0.2	O
6	Obesity Differentially Effects Visceral vs. Subcutaneous Adipose Arteries: Role of Shear Activated Kir2.1 and Alterations to the Glycocalyx in Mediating Endothelial Dysfunction. FASEB Journal, 2022, 36, .	0.2	0
7	Cardiovascular mechanosensitive ion channels—Translating physical forces into physiological responses. Current Topics in Membranes, 2021, 87, 47-95.	0.5	4
8	Impairment of Flow-Sensitive Inwardly Rectifying K ⁺ Channels via Disruption of Glycocalyx Mediates Obesity-Induced Endothelial Dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e240-e255.	1.1	30
9	Endothelial inwardly-rectifying K+ channels as a key component of shear stress-induced mechanotransduction. Current Topics in Membranes, 2020, 85, 59-88.	0.5	6
10	LDL induces cholesterol loading and inhibits endothelial proliferation and angiogenesis in Matrigels: correlation with impaired angiogenesis during wound healing. American Journal of Physiology - Cell Physiology, 2020, 318, C762-C776.	2.1	18
11	Electrophysiological Recordings of Single-cell Ion Currents Under Well-defined Shear Stress. Journal of Visualized Experiments, 2019, , .	0.2	O
12	Potential Strategies to Reduce Blood Pressure in Treatment-Resistant Hypertension Using Food and Drug Administration–Approved Nanodrug Delivery Platforms. Hypertension, 2019, 73, 250-257.	1.3	15
13	Shear-Stress Sensitive Inwardly-Rectifying K+ Channels Regulate Developmental Retinal Angiogenesis by Vessel Regression. Cellular Physiology and Biochemistry, 2019, 52, 1569-1583.	1.1	11
14	Hypercholesterolemiaâ€Induced Loss of Flowâ€Induced Vasodilation and Lesion Formation in Apolipoprotein E–Deficient Mice Critically Depend on Inwardly Rectifying K ⁺ Channels. Journal of the American Heart Association, 2018, 7, .	1.6	36
15	Proatherogenic Flow Increases Endothelial Stiffness via Enhanced CD36-Mediated Uptake of Oxidized Low-Density Lipoproteins. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 64-75.	1.1	37
16	Microvascular Vasodilator Plasticity After Acute Exercise. Exercise and Sport Sciences Reviews, 2018, 46, 48-55.	1.6	16
17	Comparative analysis of endothelial cell and sub-endothelial cell elastic moduli in young and aged mice: Role of CD36. Journal of Biomechanics, 2018, 76, 263-268.	0.9	13
18	Endothelial dysfunction can be reversed in obese humans and mice by overexpression of endothelial Kir2.1 channels. FASEB Journal, 2018, 32, lb309.	0.2	0

#	Article	IF	Citations
19	Roles of <scp>NADPH</scp> oxidase and mitochondria in flowâ€induced vasodilation of human adipose arterioles: <scp>ROS</scp> â€induced <scp>ROS</scp> release in coronary artery disease. Microcirculation, 2017, 24, e12380.	1.0	30
20	Nonpharmacologic management of hypertension. Current Opinion in Cardiology, 2017, 32, 381-388.	0.8	22
21	Short-term regular aerobic exercise reduces oxidative stress produced by acute high intraluminal pressure in the adipose microvasculature. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H896-H906.	1.5	19
22	Inwardly rectifying K ⁺ channels are major contributors to flowâ€induced vasodilatation in resistance arteries. Journal of Physiology, 2017, 595, 2339-2364.	1.3	71
23	Differential regulation of TRPV1 channels by H2O2: implications for diabetic microvascular dysfunction. Basic Research in Cardiology, 2016, 111, 21.	2.5	35
24	Diphenyl Phosphine Oxideâ€1â€Sensitive K ⁺ Channels Contribute to the Vascular Tone and Reactivity of Resistance Arteries From Brain and Skeletal Muscle. Microcirculation, 2015, 22, 315-325.	1.0	7
25	Bisphenol A activates BK channels through effects on \hat{l}_{\pm} and \hat{l}_{\pm}^2 1 subunits. Channels, 2014, 8, 249-257.	1.5	13
26	Diabetes mellitus reduces the function and expression of ATP-dependent K+ channels in cardiac mitochondria. Life Sciences, 2013, 92, 664-668.	2.0	23
27	Penitrem A as a Tool for Understanding the Role of Large Conductance Ca2+/Voltage-Sensitive K+ Channels in Vascular Function. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 453-460.	1.3	16