Pei-Yu Chiou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9420473/publications.pdf

Version: 2024-02-01

57	1,753	21 h-index	35
papers	citations		g-index
59	59	59	2324
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Tunnel dielectrophoresis for ultra-high precision size-based cell separation. Lab on A Chip, 2021, 21, 1049-1060.	6.0	24
2	Distributed colorimetric interferometer for mapping the pressure distribution in a complex microfluidics network. Lab on A Chip, 2021, 21, 942-950.	6.0	3
3	Generating stable isolated mitochondrial recipient clones in mammalian cells using MitoPunch mitochondrial transfer. STAR Protocols, 2021, 2, 100850.	1.2	2
4	Stable transplantation of human mitochondrial DNA by high-throughput, pressurized isolated mitochondrial delivery. ELife, 2021, 10, .	6.0	25
5	Differential Contributions of Actin and Myosin to the Physical Phenotypes and Invasion of Pancreatic Cancer Cells. Cellular and Molecular Bioengineering, 2020, 13, 27-44.	2.1	13
6	Photothermal Intracellular Delivery Using Gold Nanodisk Arrays. , 2020, 2, 1475-1483.		15
7	Type V Collagen in Scar Tissue Regulates the Size of Scar after Heart Injury. Cell, 2020, 182, 545-562.e23.	28.9	113
8	Field-programmable acoustic array for patterning micro-objects. Applied Physics Letters, 2020, 116, .	3.3	5
9	Pressure-Driven Mitochondrial Transfer Pipeline Generates Mammalian Cells of Desired Genetic Combinations and Fates. Cell Reports, 2020, 33, 108562.	6.4	21
10	10.1063/5.0003147.1., 2020,,.		O
10	10.1063/5.0003147.1., 2020, , . Intracellular Photothermal Delivery for Suspension Cells Using Sharp Nanoscale Tips in Microwells. ACS Nano, 2019, 13, 10835-10844.	14.6	32
	Intracellular Photothermal Delivery for Suspension Cells Using Sharp Nanoscale Tips in Microwells.	14.6	
11	Intracellular Photothermal Delivery for Suspension Cells Using Sharp Nanoscale Tips in Microwells. ACS Nano, 2019, 13, 10835-10844. Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for		32
11	Intracellular Photothermal Delivery for Suspension Cells Using Sharp Nanoscale Tips in Microwells. ACS Nano, 2019, 13, 10835-10844. Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for deep-brain chemical sensing and agent delivery. Biosensors and Bioelectronics, 2019, 131, 37-45. Deep, sub-wavelength acoustic patterning of complex and non-periodic shapes on soft membranes	10.1	107
11 12 13	Intracellular Photothermal Delivery for Suspension Cells Using Sharp Nanoscale Tips in Microwells. ACS Nano, 2019, 13, 10835-10844. Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for deep-brain chemical sensing and agent delivery. Biosensors and Bioelectronics, 2019, 131, 37-45. Deep, sub-wavelength acoustic patterning of complex and non-periodic shapes on soft membranes supported by air cavities. Lab on A Chip, 2019, 19, 3714-3725. Plasmonic micropillars for precision cell force measurement across a large field-of-view. Applied	10.1	32 107 19
11 12 13	Intracellular Photothermal Delivery for Suspension Cells Using Sharp Nanoscale Tips in Microwells. ACS Nano, 2019, 13, 10835-10844. Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for deep-brain chemical sensing and agent delivery. Biosensors and Bioelectronics, 2019, 131, 37-45. Deep, sub-wavelength acoustic patterning of complex and non-periodic shapes on soft membranes supported by air cavities. Lab on A Chip, 2019, 19, 3714-3725. Plasmonic micropillars for precision cell force measurement across a large field-of-view. Applied Physics Letters, 2018, 112, 033701. Large Area Precision Cell Traction Force Measurements Using Gold Disk Mounted Micro-Pillars., 2018,	10.1	32 107 19 15
11 12 13 14	Intracellular Photothermal Delivery for Suspension Cells Using Sharp Nanoscale Tips in Microwells. ACS Nano, 2019, 13, 10835-10844. Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for deep-brain chemical sensing and agent delivery. Biosensors and Bioelectronics, 2019, 131, 37-45. Deep, sub-wavelength acoustic patterning of complex and non-periodic shapes on soft membranes supported by air cavities. Lab on A Chip, 2019, 19, 3714-3725. Plasmonic micropillars for precision cell force measurement across a large field-of-view. Applied Physics Letters, 2018, 112, 033701. Large Area Precision Cell Traction Force Measurements Using Gold Disk Mounted Micro-Pillars., 2018,	10.1	32 107 19 15

#	Article	lF	Citations
19	Lift-off cell lithography for cell patterning with clean background. Lab on A Chip, 2018, 18, 3074-3078.	6.0	24
20	Liquid Metalâ€Based Multifunctional Micropipette for 4D Single Cell Manipulation. Advanced Science, 2018, 5, 1700711.	11.2	25
21	Plasmonic micropillars for massively parallel precision cell force measurement., 2017,,.		O
22	Pulsed laser activated cell sorter with dielectrophoretic single stream sheathless focusing. , 2017, , .		0
23	Heavily doped silicon electrode for dielectrophoresis in high conductivity media. Applied Physics Letters, 2017, 111, .	3.3	13
24	A high throughput electrorotation flow cytometer for single-cell analysis in continuous flows. , 2017, , .		0
25	Photothermal intracellular delivery with self-aligned cell seeding. , 2017, , .		0
26	Photothermal nanoblades for delivery of large-sized cargo into mammalian cells at high throughput. , $2016, , .$		0
27	Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media. Scientific Reports, 2016, 6, 22630.	3.3	29
28	Intracellular Delivery by Shape Anisotropic Magnetic Particle–Induced Cell Membrane Cuts. Journal of the Association for Laboratory Automation, 2016, 21, 548-556.	2.8	1
29	Modifying the Mitochondrial Genome. Cell Metabolism, 2016, 23, 785-796.	16.2	101
30	Mitochondrial Transfer by Photothermal Nanoblade Restores Metabolite Profile in Mammalian Cells. Cell Metabolism, 2016, 23, 921-929.	16.2	84
31	Tunnel Dielectrophoresis for Tunable, Singleâ€Stream Cell Focusing in Physiological Buffers in Highâ€Speed Microfluidic Flows. Small, 2016, 12, 4343-4348.	10.0	53
32	Microfluidics: Tunnel Dielectrophoresis for Tunable, Single-Stream Cell Focusing in Physiological Buffers in High-Speed Microfluidic Flows (Small 32/2016). Small, 2016, 12, 4302-4302.	10.0	4
33	A hybrid silicon-PDMS multifunctional neural probe. , 2016, , .		0
34	Tunable dielectrophoresis for sheathless 3D focusing. , 2015, , .		1
35	Direct Nuclear Delivery of DNA by Photothermal Nanoblade. Journal of the Association for Laboratory Automation, 2015, 20, 659-662.	2.8	4
36	Fabrication of 3D high aspect ratio PDMS microfluidic networks with a hybrid stamp. Lab on A Chip, 2015, 15, 1861-1868.	6.0	48

#	Article	IF	Citations
37	Massively parallel delivery of large cargo into mammalian cells with light pulses. Nature Methods, 2015, 12, 439-444.	19.0	151
38	Pulsed Laser Activated Cell Sorting with Three Dimensional Sheathless Inertial Focusing. Small, 2014, 10, 1746-1751.	10.0	66
39	Optoelectronic tweezers integrated with lensfree holographic microscopy for wide-field interactive cell and particle manipulation on a chip. Lab on A Chip, 2013, 13, 2278.	6.0	41
40	Microfluidic integrated optoelectronic tweezers for single-cell preparation and analysis. Lab on A Chip, 2013, 13, 3721.	6.0	79
41	Optoelectronic tweezers integrated with 3D microfluidic networks. , 2013, , .		1
42	3D pulsed laser-triggered high-speed microfluidic fluorescence-activated cell sorter. Analyst, The, 2013, 138, 7308.	3.5	73
43	Fabrication and performance of the light switchable microelectrode array for retinal prosthesis. , 2013, , .		0
44	Real-time monitoring of photothermal porated mammalian cells by electric impedance sensors. , 2012, , .		0
45	Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter. Lab on A Chip, 2012, 12, 1378.	6.0	111
46	Photothermal Nanoblade for Large Cargo Delivery into Mammalian Cells. Analytical Chemistry, 2011, 83, 1321-1327.	6.5	64
47	Driving multilayer PDMS based peristaltic pump with laser pulses. , 2011, , .		0
48	Characterization of a light switchable microelectrode array for retinal prosthesis. Applied Physics Letters, 2011, 99, 253702.	3.3	4
49	A conceptual prototype of the light switchable microelectrode array (LSMA) for retinal prosthesis. , 2010, , .		2
50	Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media. Lab on A Chip, 2010, 10, 165-172.	6.0	122
51	A laser driven optofluidic device for high-speed and precise volume-controlled droplet generation on demand. , 2010, , .		0
52	Optoelectronic tweezers integrating with lensless imaging for wide field interactive optical manipulation., 2009,,.		0
53	Pulsed laser triggered high speed microfluidic switch. Applied Physics Letters, 2008, 93, .	3.3	35
54	Light image patterned molecular delivery into live cells using gold particle coated substrate., 2008,,.		0

Реі-Үи Сніои

#	Article	IF	CITATION
55	Light-Actuated AC Electroosmosis for Nanoparticle Manipulation. Journal of Microelectromechanical Systems, 2008, 17, 525-531.	2.5	97
56	A Novel Single-Cell Surgery Tool Using Photothermal Effects of Metal Nanoparticles. , 2007, , .		0
57	Optically Controlled Cell Discrimination and Trapping Using Optoelectronic Tweezers. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 235-243.	2.9	116