Federico Sebastiani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9420236/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Genome Phylogeny for Mitochondria Among Â-Proteobacteria and a Predominantly Eubacterial Ancestry of Yeast Nuclear Genes. Molecular Biology and Evolution, 2004, 21, 1643-1660.	3.5	307

Relaxed Molecular Clock Provides Evidence for Long-Distance Dispersal of Nothofagus (Southern) Tj ETQq0 0 0 rgBT $\frac{10}{177}$ Overlock 10 Tf 50

3	Molecular Footprints of Local Adaptation in Two Mediterranean Conifers. Molecular Biology and Evolution, 2011, 28, 101-116.	3.5	172
4	A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics, 2010, 11, 570.	1.2	144
5	Modulation of Phytohormone Signaling: A Primary Function of Flavonoids in Plant–Environment Interactions. Frontiers in Plant Science, 2018, 9, 1042.	1.7	134
6	Are Flavonoids Effective Antioxidants in Plants? Twenty Years of Our Investigation. Antioxidants, 2020, 9, 1098.	2.2	133
7	Range-wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers. Molecular Ecology, 2007, 16, 2137-2153.	2.0	129
8	GENETICALLY DEPAUPERATE BUT WIDESPREAD: THE CASE OF AN EMBLEMATIC MEDITERRANEAN PINE. Evolution; International Journal of Organic Evolution, 2008, 62, 680-688.	1.1	128
9	Isoprenoids and phenylpropanoids are key components of the antioxidant defense system of plants facing severe excess light stress. Environmental and Experimental Botany, 2015, 119, 54-62.	2.0	107
10	Plants for Sustainable Improvement of Indoor Air Quality. Trends in Plant Science, 2018, 23, 507-512.	4.3	95
11	Cenetic effects of chronic habitat fragmentation revisited: Strong genetic structure in a temperate tree, <i>Taxus baccata</i> (Taxaceae), with great dispersal capability. American Journal of Botany, 2010, 97, 303-310.	0.8	94
12	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2009–30 November 2009. Molecular Ecology Resources, 2010, 10, 404-408.	2.2	84
13	Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (<i>Pinus pinaster</i> Aiton,) Tj ETQq1 1 0.784	314 rgBT / 1.2	Overlock 1
14	Multispecies genetic structure and hybridization in the <i>Betula</i> genus across Eurasia. Molecular Ecology, 2017, 26, 589-605.	2.0	67
15	Review: ABA, flavonols, and the evolvability of land plants. Plant Science, 2019, 280, 448-454.	1.7	67
16	Patterns of polymorphism resulting from longâ€range colonization in the Mediterranean conifer Aleppo pine. New Phytologist, 2009, 184, 1016-1028.	3.5	66
17	Crosses between Saccharomyces cerevisiae and Saccharomyces bayanus generate fertile hybrids. Research in Microbiology, 2002, 153, 53-58.	1.0	56
18	Molecular genetic diversity of Punica granatum L. (pomegranate) as revealed by microsatellite DNA markers (SSR). Gene, 2012, 493, 105-112.	1.0	49

FEDERICO SEBASTIANI

#	Article	IF	CITATIONS
19	RNA-Seq Analysis of Quercus pubescens Leaves: De Novo Transcriptome Assembly, Annotation and Functional Markers Development. PLoS ONE, 2014, 9, e112487.	1.1	49
20	Variation in the chloroplast DNA of Swiss stone pine (<i>Pinus cembra</i> L.) reflects contrasting postâ€glacial history of populations from the Carpathians and the Alps. Journal of Biogeography, 2009, 36, 1798-1806.	1.4	44
21	Dissecting molecular and physiological response mechanisms to high solar radiation in cyanic and acyanic leaves: a case study on red and green basil. Journal of Experimental Botany, 2017, 68, 2425-2437.	2.4	42
22	Isolation and characterization of polymorphic nuclear microsatellite loci in Taxus baccata L Conservation Genetics, 2008, 9, 1665-1668.	0.8	39
23	High genetic variation in marginal fragmented populations at extreme climatic conditions of the Patagonian Cypress Austrocedrus chilensis. Molecular Phylogenetics and Evolution, 2010, 54, 941-949.	1.2	32
24	Unveiling the shade nature of cyanic leaves: A view from the "blue absorbing side―of anthocyanins. Plant, Cell and Environment, 2021, 44, 1119-1129.	2.8	31
25	New proteins orthologous to cerato-platanin in various Ceratocystis species and the purification and characterization of cerato-populin from Ceratocystis populicola. Applied Microbiology and Biotechnology, 2009, 84, 309-322.	1.7	28
26	De Novo Assembly and Comparative Transcriptome Analyses of Red and Green Morphs of Sweet Basil Grown in Full Sunlight. PLoS ONE, 2016, 11, e0160370.	1.1	25
27	Environmental pollution effects on plant microbiota: the case study of poplar bacterial-fungal response to silver nanoparticles. Applied Microbiology and Biotechnology, 2019, 103, 8215-8227.	1.7	21
28	Isolation of microsatellite markers for the common Mediterranean shrub <i>Myrtus communis</i> (Myrtaceae). American Journal of Botany, 2010, 97, e23-5.	0.8	15
29	RAPD-derived, PCR-based mitochondrial markers for Larix species and their usefulness in phylogeny. Conservation Genetics, 2006, 7, 621-625.	0.8	13
30	The influence of a relict distribution on genetic structure and variation in the Mediterranean tree, <i>Platanus orientalis</i> . AoB PLANTS, 2019, 11, plz002.	1.2	10
31	Isolation of SSR markers for two African tropical tree species, <i>Erythrophleum suaveolens</i> and <i>E. ivorense</i> (Caesalpinioideae). American Journal of Botany, 2011, 98, e106-8.	0.8	9
32	Conservation biology of the last Italian population of Cistus laurifolius (Cistaceae): demographic structure, reproductive success and population genetics. Nature Conservation, 0, 22, 169-190.	0.0	9
33	A sample view of the pedunculate oak (Quercus robur) genome from the sequencing of hypomethylated and random genomic libraries. Tree Genetics and Genomes, 2011, 7, 1277-1285.	0.6	7
34	Dissecting Adaptation Mechanisms to Contrasting Solar Irradiance in the Mediterranean Shrub Cistus incanus. International Journal of Molecular Sciences, 2019, 20, 3599.	1.8	7
35	Comparative transcriptional and metabolic responses of Pinus pinea to a native and a non-native Heterobasidion species. Tree Physiology, 2019, 39, 31-44.	1.4	6
36	Resistance to Arsenite and Arsenate in Saccharomyces cerevisiae Arises through the Subtelomeric Expansion of a Cluster of Yeast Genes. International Journal of Environmental Research and Public Health, 2022, 19, 8119.	1.2	5

#	Article	IF	CITATIONS
37	Phenotypic plasticity of two M. oleifera ecotypes from different climatic zones under water stress and re-watering. , 2020, 8, coaa028.		4
38	Development of highly polymorphic tetranucleotide microsatellite markers in <i>Austrocedrus chilensis</i> . Molecular Ecology Resources, 2008, 8, 887-889.	2.2	3