Maria Bryszewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9420069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neurotoxicity of poly(propylene imine) glycodendrimers. Drug and Chemical Toxicology, 2022, 45, 1484-1492.	1.2	11
2	Differences between Cu- and Fe–Cu nanoflowers in their interactions with fluorescent probes ANS and Fura-2 and proteins albumin and thrombin. Polymer Bulletin, 2022, 79, 5247-5259.	1.7	1
3	Hippophae rhamnoides L. leaf and twig extracts as rich sources of nutrients and bioactive compounds with antioxidant activity. Scientific Reports, 2022, 12, 1095.	1.6	5
4	Unmodified and tyrosine-modified polyethylenimines as potential carriers for siRNA: Biophysical characterization and toxicity. International Journal of Pharmaceutics, 2022, 614, 121468.	2.6	8
5	The effect of maltose modified fourth generation poly(propylene imine) (PPI G4) dendrimers on the barrier functions and inflammatory activation of human vascular endothelium – Possible consequences for the medical application. Vascular Pharmacology, 2022, 143, 106972.	1.0	1
6	Circulating microRNAs in Medicine. International Journal of Molecular Sciences, 2022, 23, 3996.	1.8	30
7	Glassy-like Metal Oxide Particles Embedded on Micrometer Thicker Alginate Films as Promising Wound Healing Nanomaterials. International Journal of Molecular Sciences, 2022, 23, 5585.	1.8	2
8	Interaction of Cationic Carbosilane Dendrimers and Their siRNA Complexes with MCF-7 Cells Cultured in 3D Spheroids. Cells, 2022, 11, 1697.	1.8	1
9	The effect of surface modification of dendronized gold nanoparticles on activation and release of pyroptosis-inducing pro-inflammatory cytokines in presence of bacterial lipopolysaccharide in monocytes. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112652.	2.5	3
10	Evaluation of dendronized gold nanoparticles as siRNAs carriers into cancer cells. Journal of Molecular Liquids, 2021, 324, 114726.	2.3	15
11	In vivo therapeutic applications of phosphorus dendrimers: state of the art. Drug Discovery Today, 2021, 26, 677-689.	3.2	23
12	Combined therapy of ruthenium dendrimers and anti-cancer drugs against human leukemic cells. Dalton Transactions, 2021, 50, 9500-9511.	1.6	8
13	PEGylation of Dendronized Gold Nanoparticles Affects Their Interaction with Thrombin and siRNA. Journal of Physical Chemistry B, 2021, 125, 1196-1206.	1.2	8
14	Hybrid phosphorus–viologen dendrimers as new soft nanoparticles: design and properties. Organic Chemistry Frontiers, 2021, 8, 4607-4622.	2.3	11
15	Comparison of the effects of dendrimer, micelle and silver nanoparticles on phospholipase A2 structure. Journal of Biotechnology, 2021, 331, 48-52.	1.9	3
16	Antimicrobial Effect of Chitosan Films on Food Spoilage Bacteria. International Journal of Molecular Sciences, 2021, 22, 5839.	1.8	20
17	Chimeric Stimuli-Responsive Liposomes as Nanocarriers for the Delivery of the Anti-Glioma Agent TRAM-34. International Journal of Molecular Sciences, 2021, 22, 6271.	1.8	7
18	Interaction of Cationic Carbosilane Dendrimers and Their siRNA Complexes with MCF-7 Cells. International Journal of Molecular Sciences, 2021, 22, 7097.	1.8	11

#	Article	IF	CITATIONS
19	Tyrosine-modified linear PEIs for highly efficacious and biocompatible siRNA delivery in vitro and in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 36, 102403.	1.7	16
20	Dendrimeric HIV-peptide delivery nanosystem affects lipid membranes structure. Scientific Reports, 2021, 11, 16810.	1.6	3
21	The Interaction of Heptakis (2,6-di-O-Methyl)-β-cyclodextrin with Mianserin Hydrochloride and Its Influence on the Drug Toxicity. International Journal of Molecular Sciences, 2021, 22, 9419.	1.8	3
22	Thermoresponsive chimeric nanocarriers as drug delivery systems. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112141.	2.5	5
23	Prospects of Cationic Carbosilane Dendronized Gold Nanoparticles as Non-viral Vectors for Delivery of Anticancer siRNAs siBCL-xL and siMCL-1. Pharmaceutics, 2021, 13, 1549.	2.0	10
24	Organometallic dendrimers based on Ruthenium(II) N-heterocyclic carbenes and their implication as delivery systems of anticancer small interfering RNA. Journal of Inorganic Biochemistry, 2021, 223, 111540.	1.5	16
25	Dendronized Gold Nanoparticles as Carriers for gp160 (HIV-1) Peptides: Biophysical Insight into Complex Formation. Langmuir, 2021, 37, 1542-1550.	1.6	10
26	Insight into Factors Influencing Wound Healing Using Phosphorylated Cellulose-Filled-Chitosan Nanocomposite Films. International Journal of Molecular Sciences, 2021, 22, 11386.	1.8	9
27	Cationic Carbosilane Dendrimers Prevent Abnormal α-Synuclein Accumulation in Parkinson's Disease Patient-Specific Dopamine Neurons. Biomacromolecules, 2021, 22, 4582-4591.	2.6	12
28	Nanoparticles for local delivery of siRNA in lung therapy. Advanced Drug Delivery Reviews, 2021, 179, 114038.	6.6	23
29	Blood Compatibility of Amphiphilic Phosphorous Dendrons—Prospective Drug Nanocarriers. Biomedicines, 2021, 9, 1672.	1.4	4
30	Thermodynamic Studies of Interactions between Sertraline Hydrochloride and Randomly Methylated β-Cyclodextrin Molecules Supported by Circular Dichroism Spectroscopy and Molecular Docking Results. International Journal of Molecular Sciences, 2021, 22, 12357.	1.8	6
31	Comparison of cationic liposome and PAMAM dendrimer for delivery of anti-Plk1 siRNA in breast cancer treatment. Pharmaceutical Development and Technology, 2020, 25, 9-19.	1.1	15
32	Effect of PEGylation on the biological properties of cationic carbosilane dendronized gold nanoparticles. International Journal of Pharmaceutics, 2020, 573, 118867.	2.6	9
33	PEGylation of dendronized silver nanoparticles increases the binding affinity of antimicrobial proteins. Journal of Molecular Liquids, 2020, 319, 114339.	2.3	9
34	Phosphorylated Micro- and Nanocellulose-Filled Chitosan Nanocomposites as Fully Sustainable, Biologically Active Bioplastics. ACS Sustainable Chemistry and Engineering, 2020, 8, 18354-18365.	3.2	35
35	Maltotriose-modified poly(propylene imine) Glycodendrimers as a potential novel platform in the treatment of chronic lymphocytic Leukemia. A proof-of-concept pilot study in the animal model of CLL. Toxicology and Applied Pharmacology, 2020, 403, 115139.	1.3	11
36	Copper (II) Metallodendrimers Combined with Pro-Apoptotic siRNAs as a Promising Strategy Against Breast Cancer Cells. Pharmaceutics, 2020, 12, 727.	2.0	17

#	Article	IF	CITATIONS
37	Phosphorus dendrimers as powerful nanoplatforms for drug delivery, as fluorescent probes and for liposome interaction studies: A concise overview. European Journal of Medicinal Chemistry, 2020, 208, 112788.	2.6	13
38	Spheroids as a Type of Three-Dimensional Cell Cultures—Examples of Methods of Preparation and the Most Important Application. International Journal of Molecular Sciences, 2020, 21, 6225.	1.8	162
39	Bioactive Compounds and Antiradical Activity of the Rosa canina L. Leaf and Twig Extracts. Agronomy, 2020, 10, 1897.	1.3	12
40	Heterofunctional ruthenium(II) carbosilane dendrons, a new class of dendritic molecules to fight against prostate cancer. European Journal of Medicinal Chemistry, 2020, 207, 112695.	2.6	7
41	Ruthenium Dendrimers against Human Lymphoblastic Leukemia 1301 Cells. International Journal of Molecular Sciences, 2020, 21, 4119.	1.8	20
42	Poly(propylene imine) dendrimers can bind to PEGylated albumin at PEG and albumin surface: Biophysical examination of a PEGylated platform to transport cationic dendritic nanoparticles. Biopolymers, 2020, 111, e23386.	1.2	3
43	Generation Dependent Effects and Entrance to Mitochondria of Hybrid Dendrimers on Normal and Cancer Neuronal Cells In Vitro. Biomolecules, 2020, 10, 427.	1.8	9
44	Silver Nanoparticles Surface-Modified with Carbosilane Dendrons as Carriers of Anticancer siRNA. International Journal of Molecular Sciences, 2020, 21, 4647.	1.8	20
45	Chitosan-Functionalized Graphene Nanocomposite Films: Interfacial Interplay and Biological Activity. Materials, 2020, 13, 998.	1.3	31
46	Glucose-modified carbosilane dendrimers: Interaction with model membranes and human serum albumin. International Journal of Pharmaceutics, 2020, 579, 119138.	2.6	8
47	Zeta potential technique for analyzing semen quality. MethodsX, 2020, 7, 100895.	0.7	9
48	Cyclopentadienyl ruthenium(II) carbosilane metallodendrimers as a promising treatment against advanced prostate cancer. European Journal of Medicinal Chemistry, 2020, 199, 112414.	2.6	14
49	Nanoparticles in Combating Cancer: Opportunities and Limitations: A Brief Review. Current Medicinal Chemistry, 2020, 28, 346-359.	1.2	38
50	Anti-Tumour Activity of Glycodendrimer Nanoparticles in a Subcutaneous MEC-1 Xenograft Model of Human Chronic Lymphocytic Leukemia. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 325-334.	0.9	6
51	Synergistic Effects of Anionic/Cationic Dendrimers and Levofloxacin on Antibacterial Activities. Molecules, 2019, 24, 2894.	1.7	39
52	Ruthenium dendrimers against acute promyelocytic leukemia:Â <i>in vitro</i> studies on HL-60 cells. Future Medicinal Chemistry, 2019, 11, 1741-1756.	1.1	14
53	Dendrimers and hyperbranched structures for biomedical applications. European Polymer Journal, 2019, 119, 61-73.	2.6	98
54	Hybrid metal-organic nanoflowers and their application in biotechnology and medicine. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110354.	2.5	50

#	Article	IF	CITATIONS
55	The influence of cationic dendrimers on antibacterial activity of phage endolysin against P. aeruginosa cells. Bioorganic Chemistry, 2019, 91, 103121.	2.0	21
56	Synthesis and Characterization of FITC Labelled Ruthenium Dendrimer as a Prospective Anticancer Drug. Biomolecules, 2019, 9, 411.	1.8	19
57	Effect of Photobiomodulation Therapy on the Increase of Viability and Proliferation of Human Mesenchymal Stem Cells. Lasers in Surgery and Medicine, 2019, 51, 824-833.	1.1	12
58	Dendrimer for Templating the Growth of Porous Catechol-Coordinated Titanium Dioxide Frameworks: Toward Hemocompatible Nanomaterials. ACS Applied Nano Materials, 2019, 2, 2979-2990.	2.4	18
59	Dendrimer mediated targeting of siRNA against poloâ€like kinase for the treatment of triple negative breast cancer. Journal of Biomedical Materials Research - Part A, 2019, 107, 1933-1944.	2.1	31
60	In Vitro Anticancer Properties of Copper Metallodendrimers. Biomolecules, 2019, 9, 155.	1.8	22
61	Immunoreactivity changes of human serum albumin and alpha-1-microglobulin induced by their interaction with dendrimers. Colloids and Surfaces B: Biointerfaces, 2019, 179, 226-232.	2.5	4
62	Complexes of Pro-Apoptotic siRNAs and Carbosilane Dendrimers: Formation and Effect on Cancer Cells. Pharmaceutics, 2019, 11, 25.	2.0	24
63	Supramolecular Chemistry-Driven Preparation of Nanostructured, Transformable, and Biologically Active Chitosan-Clustered Single, Binary, and Ternary Metal Oxide Bioplastics. ACS Applied Bio Materials, 2019, 2, 61-69.	2.3	24
64	Ruthenium dendrimers as carriers for anticancer siRNA. Journal of Inorganic Biochemistry, 2018, 181, 18-27.	1.5	33
65	Influence of valoneoyl groups on the interactions between Euphorbia tannins and human serum albumin. Journal of Luminescence, 2018, 194, 170-178.	1.5	27
66	Dendronization of gold nanoparticles decreases their effect on human alpha-1-microglobulin. International Journal of Biological Macromolecules, 2018, 108, 936-941.	3.6	10
67	Cationic liposomes for co-delivery of paclitaxel and anti-Plk1 siRNA to achieve enhanced efficacy in breast cancer. Journal of Drug Delivery Science and Technology, 2018, 48, 253-265.	1.4	17
68	The effect of MLS laser radiation on cell lipid membrane. Annals of Agricultural and Environmental Medicine, 2018, 25, 108-113.	0.5	9
69	Dendrimers Show Promise for siRNA and microRNA Therapeutics. Pharmaceutics, 2018, 10, 126.	2.0	77
70	Dendrimer as a new potential carrier for topical delivery of siRNA: A comparative study of dendriplex vs. lipoplex for delivery of TNF-1± siRNA. International Journal of Pharmaceutics, 2018, 550, 240-250.	2.6	46
71	Role of cationic carbosilane dendrons and metallic core of functionalized gold nanoparticles in their interaction with human serum albumin. International Journal of Biological Macromolecules, 2018, 118, 1773-1780.	3.6	13
72	Affecting NF-κB cell signaling pathway in chronic lymphocytic leukemia by dendrimers-based nanoparticles. Toxicology and Applied Pharmacology, 2018, 357, 33-38.	1.3	9

#	Article	IF	CITATIONS
73	Dendrimer-protein interactions versus dendrimer-based nanomedicine. Colloids and Surfaces B: Biointerfaces, 2017, 152, 414-422.	2.5	42
74	Interaction of α-synuclein with Rhus typhina tannin – Implication for Parkinson's disease. Colloids and Surfaces B: Biointerfaces, 2017, 155, 159-165.	2.5	16
75	Antibacterial and antifungal properties of dendronized silver and gold nanoparticles with cationic carbosilane dendrons. International Journal of Pharmaceutics, 2017, 528, 55-61.	2.6	45
76	Binding of poly(amidoamine), carbosilane, phosphorus and hybrid dendrimers to thrombin—Constants and mechanisms. Colloids and Surfaces B: Biointerfaces, 2017, 155, 11-16.	2.5	9
77	Influence of core and maltose surface modification of PEIs on their interaction with plasma proteins—Human serum albumin and lysozyme. Colloids and Surfaces B: Biointerfaces, 2017, 152, 18-28.	2.5	10
78	Gold nanoparticles stabilized by cationic carbosilane dendrons: synthesis and biological properties. Dalton Transactions, 2017, 46, 8736-8745.	1.6	25
79	Ruthenium metallodendrimers with anticancer potential in an acute promyelocytic leukemia cell line (HL60). European Polymer Journal, 2017, 87, 39-47.	2.6	34
80	PPIâ€G4 Glycodendrimers Upregulate TRAILâ€Induced Apoptosis in Chronic Lymphocytic Leukemia Cells. Macromolecular Bioscience, 2017, 17, 1600169.	2.1	15
81	Original Multivalent Gold(III) and Dual Gold(III)–Copper(II) Conjugated Phosphorus Dendrimers as Potent Antitumoral and Antimicrobial Agents. Molecular Pharmaceutics, 2017, 14, 4087-4097.	2.3	54
82	Blockage of Wnt/βâ€Catenin Signaling by Nanoparticles Reduces Survival and Proliferation of CLL Cells In Vitro—Preliminary Study. Macromolecular Bioscience, 2017, 17, 1700130.	2.1	11
83	Can dendrimer based nanoparticles fight neurodegenerative diseases? Current situation versus other established approaches. Progress in Polymer Science, 2017, 64, 23-51.	11.8	54
84	Multi-Target Inhibition of Cancer Cell Growth by SiRNA Cocktails and 5-Fluorouracil Using Effective Piperidine-Terminated Phosphorus Dendrimers. Colloids and Interfaces, 2017, 1, 6.	0.9	26
85	Glycodendrimer PPI as a Potential Drug in Chronic Lymphocytic Leukaemia. The Influence of Glycodendrimer on Apoptosis in In Vitro B-CLL Cells Defined by Microarrays. Anti-Cancer Agents in Medicinal Chemistry, 2017, 17, 102-114.	0.9	9
86	Impact of mesoporous silica surface functionalization on human serum albumin interaction, cytotoxicity and antibacterial activity. Microporous and Mesoporous Materials, 2016, 231, 47-56.	2.2	15
87	Dendrimer-based nanoparticles for potential personalized therapy in chronic lymphocytic leukemia: Targeting the BCR-signaling pathway. International Journal of Biological Macromolecules, 2016, 88, 156-161.	3.6	14
88	The effect of polyethylene glycol-modified lipids on the interaction of HIV-1 derived peptide–dendrimer complexes with lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 3005-3016.	1.4	7
89	Biomolecular Interactions of Tannin Isolated from Oenothera gigas with Liposomes. Journal of Membrane Biology, 2016, 249, 171-179.	1.0	11
90	Generation-dependent effect of PAMAM dendrimers on human insulin fibrillation and thermal stability. International Journal of Biological Macromolecules, 2016, 82, 54-60.	3.6	15

#	Article	IF	CITATIONS
91	Effect of dendrimers on selected enzymes—Evaluation of nano carriers. International Journal of Pharmaceutics, 2016, 499, 247-254.	2.6	21
92	Fourier transform infrared spectroscopy (FTIR) characterization of the interaction of anti-cancer photosensitizers with dendrimers. Analytical and Bioanalytical Chemistry, 2016, 408, 535-544.	1.9	27
93	Nonconventional Gene Expression within the NF-κb Signaling Pathway Induced By Poly(propylene)Imine Glycodendrimers in Chronic Lymphocytic Leukemia Cells. Blood, 2016, 128, 5595-5595.	0.6	1
94	Influence of PAMAM dendrimers on the human insulin. AIP Conference Proceedings, 2015, , .	0.3	3
95	Carbosilane dendrimers affect the fibrillation of $\hat{I}\pm$ -synuclein. AlP Conference Proceedings, 2015, , .	0.3	1
96	Fluorescent Phosphorus Dendrimer as a Spectral Nanosensor for Macrophage Polarization and Fate Tracking in Spinal Cord Injury. Macromolecular Bioscience, 2015, 15, 1523-1534.	2.1	31
97	Poly(Propylene Imine) Dendrimers and Amoxicillin as Dual-Action Antibacterial Agents. Molecules, 2015, 20, 19330-19342.	1.7	24
98	Synthesis, characterization and biological properties of new hybrid carbosilane–viologen–phosphorus dendrimers. RSC Advances, 2015, 5, 25942-25958.	1.7	24
99	Dendrimers complexed with HIV-1 peptides interact with liposomes and lipid monolayers. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 907-915.	1.4	20
100	Haemolytic activity and cellular toxicity of SBA-15-type silicas: elucidating the role of the mesostructure, surface functionality and linker length. Journal of Materials Chemistry B, 2015, 3, 2714-2724.	2.9	21
101	Phosphorus-containing nanoparticles: biomedical patents review. Expert Opinion on Therapeutic Patents, 2015, 25, 539-548.	2.4	6
102	Nanoparticle corona for proteins: mechanisms of interaction between dendrimers and proteins. Colloids and Surfaces B: Biointerfaces, 2015, 134, 377-383.	2.5	31
103	Carbosilane dendrimers inhibit α-synuclein fibrillation and prevent cells from rotenone-induced damage. International Journal of Pharmaceutics, 2015, 484, 268-275.	2.6	39
104	Interaction of PAMAM dendrimers with bovine insulin depends on nanoparticle end-groups. Journal of Luminescence, 2015, 162, 87-91.	1.5	12
105	Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (A). Mechanisms of interaction. International Journal of Pharmaceutics, 2015, 485, 261-269.	2.6	64
106	Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (B). Efficiency of pharmacological action. International Journal of Pharmaceutics, 2015, 485, 288-294.	2.6	71
107	Interactions of dendritic glycopolymer with erythrocytes, red blood cell ghosts and membrane enzymes. International Journal of Pharmaceutics, 2015, 496, 475-488.	2.6	13
108	Maltose modified poly(propylene imine) dendrimers as potential carriers of nucleoside analog 5â€2-triphosphates International Journal of Pharmaceutics, 2015, 495, 940-947.	2.6	27

#	Article	IF	CITATIONS
109	Biological Activity of Mesoporous Dendrimer-Coated Titanium Dioxide: Insight on the Role of the Surface–Interface Composition and the Framework Crystallinity. ACS Applied Materials & Interfaces, 2015, 7, 19994-20003.	4.0	27
110	Advances in Combination Therapies Based on Nanoparticles for Efficacious Cancer Treatment: An Analytical Report. Biomacromolecules, 2015, 16, 1-27.	2.6	117
111	Blockage of Wnt/B-Catenin Signaling By Nanoparticles Reduces Survival and Proliferation of CLL Cells in Vitro. Blood, 2015, 126, 3699-3699.	0.6	1
112	Recent Patents in Dendrimers for Nanomedicine: Evolution 2014. Recent Patents on Nanomedicine, 2014, 4, 25-31.	0.5	7
113	Biophysical studies of interaction between hydrolysable tannins isolated from Oenothera gigas and Geranium sanguineum with human serum albumin. Colloids and Surfaces B: Biointerfaces, 2014, 123, 623-628.	2.5	28
114	A viologen phosphorus dendritic molecule as a carrier of ATP and Mant-ATP: spectrofluorimetric and NMR studies. New Journal of Chemistry, 2014, 38, 6212-6222.	1.4	10
115	How to study dendrimers and dendriplexes III. Biodistribution, pharmacokinetics and toxicity in vivo. Journal of Controlled Release, 2014, 181, 40-52.	4.8	93
116	Influence of MLS laser radiation on erythrocyte membrane fluidity and secondary structure of human serum albumin. Molecular and Cellular Biochemistry, 2014, 388, 261-267.	1.4	18
117	Stabilizing effect of small concentrations of PAMAM dendrimers at the insulin aggregation. Colloids and Surfaces B: Biointerfaces, 2014, 116, 757-760.	2.5	20
118	Toxicity and proapoptotic activity of poly(propylene imine) glycodendrimers in vitro: Considering their contrary potential as biocompatible entity and drug molecule in cancer. International Journal of Pharmaceutics, 2014, 461, 391-402.	2.6	24
119	Aligned collagen–GAG matrix as a 3D substrate for Schwann cell migration and dendrimer-based gene delivery. Journal of Materials Science: Materials in Medicine, 2014, 25, 1979-1989.	1.7	10
120	In vitro PAMAM, phosphorus and viologen-phosphorus dendrimers prevent rotenone-induced cell damage. International Journal of Pharmaceutics, 2014, 474, 42-49.	2.6	21
121	Interference of cationic polymeric nanoparticles with clinical chemistry tests—Clinical relevance. International Journal of Pharmaceutics, 2014, 473, 599-606.	2.6	15
122	The effect of near-infrared MLS laser radiation on cell membrane structure and radical generation. Lasers in Medical Science, 2014, 29, 1663-1668.	1.0	22
123	The influence of heterocyclic compound-PAMAM dendrimer complexes on evoked electrical responses in slices of hypoxic brain tissue. Cellular and Molecular Biology Letters, 2014, 19, 243-8.	2.7	4
124	Interaction of phosphorus dendrimers with HIV peptides—Fluorescence studies of nano-complexes formation. Journal of Luminescence, 2014, 148, 364-369.	1.5	9
125	Formation of complexes between PAMAM-NH2 G4 dendrimer and l-α-tryptophan and l-α-tyrosine in water. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 128, 647-652.	2.0	12
126	Interaction of cationic carbosilane dendrimers and their complexes with siRNA with erythrocytes and red blood cell ghosts. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 882-889.	1.4	23

#	Article	IF	CITATIONS
127	Oleochemicalâ€Tethered SBAâ€15â€Type Silicates with Tunable Nanoscopic Order, Carboxylic Surface, and Hydrophobic Framework: Cellular Toxicity, Hemolysis, and Antibacterial Activity. Chemistry - A European Journal, 2014, 20, 9596-9606.	1.7	14
128	HIV-Antigens Charged on Phosphorus Dendrimers as Tools for Tolerogenic Dendritic Cells-Based Immunotherapy. Current Medicinal Chemistry, 2014, 21, 1898-1909.	1.2	19
129	Mechanism of Cationic Phosphorus Dendrimer Toxicity against Murine Neural Cell Lines. Molecular Pharmaceutics, 2013, 10, 3484-3496.	2.3	33
130	Viologen-phosphorus dendrimers exhibit minor toxicity against a murine neuroblastoma cell line. Cellular and Molecular Biology Letters, 2013, 18, 459-78.	2.7	18
131	Doxycycline-regulated GDNF expression promotes axonal regeneration and functional recovery in transected peripheral nerve. Journal of Controlled Release, 2013, 172, 841-851.	4.8	48
132	Nanomaterials in Stroke Treatment. Stroke, 2013, 44, 2351-2355.	1.0	39
133	Contribution of hydrophobicity, DNA and proteins to the cytotoxicity of cationic PAMAM dendrimers. International Journal of Pharmaceutics, 2013, 454, 1-3.	2.6	18
134	Enhancement of antimicrobial activity by co-administration of poly(propylene imine) dendrimers and nadifloxacin. New Journal of Chemistry, 2013, 37, 4156.	1.4	18
135	Interaction between viologen-phosphorus dendrimers and α-synuclein. Journal of Luminescence, 2013, 134, 132-137.	1.5	11
136	Effect of viologen–phosphorus dendrimers on acetylcholinesterase and butyrylcholinesterase activities. International Journal of Biological Macromolecules, 2013, 54, 119-124.	3.6	22
137	The influence of PAMAM dendrimers surface groups on their interaction with porcine pepsin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1982-1987.	1.1	32
138	Acidosis, magnesium and acetylsalicylic acid: Effects on thrombin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 104, 158-164.	2.0	7
139	Novel â€~SiC' carbosilane dendrimers as carriers for anti-HIV nucleic acids: Studies on complexation and interaction with blood cells. Colloids and Surfaces B: Biointerfaces, 2013, 109, 183-189.	2.5	40
140	Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups reveals negligible toxicity against three rodent cell-lines. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 461-464.	1.7	59
141	The Influence of Maltotriose-Modified Poly(propylene imine) Dendrimers on the Chronic Lymphocytic Leukemia Cells <i>in Vitro</i> : Dense Shell G4 PPI. Molecular Pharmaceutics, 2013, 10, 2490-2501.	2.3	32
142	Complexation of HIV derived peptides with carbosilane dendrimers. Colloids and Surfaces B: Biointerfaces, 2013, 101, 236-242.	2.5	40
143	Viologen-Phosphorus Dendrimers Inhibit α-Synuclein Fibrillation. Molecular Pharmaceutics, 2013, 10, 1131-1137.	2.3	63
144	Poly(amidoamine) dendrimer complexes as a platform for gene delivery. Expert Opinion on Drug Delivery, 2013, 10, 1687-1698.	2.4	98

#	Article	IF	CITATIONS
145	Phosphorus Dendrimers as Carriers of siRNA—Characterisation of Dendriplexes. Molecules, 2013, 18, 4451-4466.	1.7	40
146	Promising Low-Toxicity of Viologen-Phosphorus Dendrimers against Embryonic Mouse Hippocampal Cells. Molecules, 2013, 18, 12222-12240.	1.7	19
147	Interaction between polyamidoamine (PAMAM) dendrimers and bovine insulin. Neuroendocrinology Letters, 2013, 34, 573-8.	0.2	0
148	Carbosilane Dendrimers are a Non-Viral Delivery System for Antisense Oligonucleotides: Characterization of Dendriplexes. Journal of Biomedical Nanotechnology, 2012, 8, 57-73.	0.5	34
149	Characteristics of complexes between poly(propylene imine) dendrimers and nucleotides. New Journal of Chemistry, 2012, 36, 1610.	1.4	14
150	Antimicrobial activity of poly(propylene imine) dendrimers. New Journal of Chemistry, 2012, 36, 2215.	1.4	46
151	Dendrimer-Driven Neurotrophin Expression Differs in Temporal Patterns between Rodent and Human Stem Cells. Molecular Pharmaceutics, 2012, 9, 1521-1528.	2.3	18
152	Phosphorus-containing dendrimers against α-synuclein fibril formation. International Journal of Biological Macromolecules, 2012, 50, 1138-1143.	3.6	56
153	siRNA carriers based on carbosilane dendrimers affect zeta potential and size of phospholipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2209-2216.	1.4	31
154	Biological Properties of New Viologen-Phosphorus Dendrimers. Molecular Pharmaceutics, 2012, 9, 448-457.	2.3	85
155	Poly(propylene imine) dendrimers modified with maltose or maltotriose protect phosphorothioate oligodeoxynucleotides against nuclease activity. Biochemical and Biophysical Research Communications, 2012, 427, 197-201.	1.0	20
156	Surface modification of PAMAM dendrimer improves its biocompatibility. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 815-817.	1.7	96
157	Impact of maltose modified poly(propylene imine) dendrimers on liver alcohol dehydrogenase (LADH) internal dynamics and structure. New Journal of Chemistry, 2012, 36, 1992.	1.4	8
158	Stability of Dendriplexes Formed by Anti-HIV Genetic Material and Poly(propylene imine) Dendrimers in the Presence of Glucosaminoglycans. Journal of Physical Chemistry B, 2012, 116, 14525-14532.	1.2	11
159	Modulation of biogenic amines content by poly(propylene imine) dendrimers in rats. Journal of Physiology and Biochemistry, 2012, 68, 447-454.	1.3	9
160	Editorial [Hot Topic: Dendrimers in Biomedical Applications]. Current Medicinal Chemistry, 2012, 19, 4895-4895.	1.2	7
161	Influence of dendrimers on red blood cells. Cellular and Molecular Biology Letters, 2012, 17, 21-35.	2.7	50
162	Influence of fourth generation poly(propyleneimine) dendrimers on blood cells. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2870-2880.	2.1	54

#	Article	IF	CITATIONS
163	Genotoxicity of poly(propylene imine) dendrimers. Biopolymers, 2012, 97, 642-648.	1.2	32
164	Effect of phosphorus dendrimers on DMPC lipid membranes. Chemistry and Physics of Lipids, 2012, 165, 408-413.	1.5	35
165	Cationic carbosilane dendrimers–lipid membrane interactions. Chemistry and Physics of Lipids, 2012, 165, 401-407.	1.5	30
166	The influence of maltose modified poly(propylene imine) dendrimers on hen egg white lysozyme structure and thermal stability. Colloids and Surfaces B: Biointerfaces, 2012, 95, 103-108.	2.5	35
167	Photo-physical and structural interactions between viologen phosphorus-based dendrimers and human serum albumin. Journal of Luminescence, 2012, 132, 1553-1563.	1.5	22
168	Stabilization of erythrocytes against oxidative and hypotonic stress by tannins isolated from sumac leaves (Rhus typhina L.) and grape seeds (Vitis vinifera L.). Cellular and Molecular Biology Letters, 2012, 17, 333-48.	2.7	30
169	Non-virally Modified Human Mesenchymal Stem Cells Produce Ciliary Neurotrophic Factor in Biodegradable Fibrin-Based 3D Scaffolds. Journal of Pharmaceutical Sciences, 2012, 101, 1546-1554.	1.6	17
170	Nanoparticles – a Novel Approach to Chronic Lymphocytic Leukemia Treatment?. Blood, 2012, 120, 4601-4601.	0.6	5
171	Interactions of phosphorus-containing dendrimers with liposomes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 221-226.	1.2	40
172	The influence of PAMAM-OH dendrimers on the activity of human erythrocytes ATPases. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2714-2723.	1.4	28
173	<i>In vivo</i> toxicity of poly(propyleneimine) dendrimers. Journal of Biomedical Materials Research - Part A, 2011, 99A, 261-268.	2.1	96
174	Interaction of cationic phosphorus dendrimers (CPD) with charged and neutral lipid membranes. Colloids and Surfaces B: Biointerfaces, 2011, 82, 8-12.	2.5	41
175	Carbosilane dendrimers NN8 and NN16 form a stable complex with siGAG1. Colloids and Surfaces B: Biointerfaces, 2011, 83, 388-391.	2.5	33
176	Characterization of complexes formed by polypropylene imine dendrimers and anti-HIV oligonucleotides. Colloids and Surfaces B: Biointerfaces, 2011, 83, 360-366.	2.5	33
177	The interaction of PVP complexes of gossypol and its derivatives with an artificial membrane lipid matrix. Cellular and Molecular Biology Letters, 2010, 15, 98-117.	2.7	5
178	Time Evolution of the Aggregation Process of Peptides Involved in Neurodegenerative Diseases and Preventing Aggregation Effect of Phosphorus Dendrimers Studied by EPR. Biomacromolecules, 2010, 11, 3014-3021.	2.6	35
179	Effect of amyloid beta peptides Aβ1–28 and Aβ25–40 on model lipid membranes. Journal of Thermal Analysis and Calorimetry, 2010, 99, 741-747.	2.0	30
180	Use of polyamidoamine dendrimers to engineer BDNF-producing human mesenchymal stem cells. Molecular Biology Reports, 2010, 37, 2003-2008.	1.0	30

#	Article	IF	CITATIONS
181	How to study dendriplexes II: Transfection and cytotoxicity. Journal of Controlled Release, 2010, 141, 110-127.	4.8	72
182	Metabolic limitations of the use of nucleoside analogs in cancer therapy may be overcome by application of nanoparticles as drug carriers: A review. Drug Development Research, 2010, 71, 383-394.	1.4	6
183	Fabrication of CdSeâ€Nanofibers with Potential for Biomedical Applications. Advanced Functional Materials, 2010, 20, 1011-1018.	7.8	30
184	New Drug Delivery Nanosystem Combining Liposomal and Dendrimeric Technology (Liposomal) Tj ETQq0 0 0 rgBT	/Overlock 1.6	10 Tf 50 62 47
185	Transfection efficiencies of PAMAM dendrimers correlate inversely with their hydrophobicity. International Journal of Pharmaceutics, 2010, 383, 228-235.	2.6	65
186	Phenotype and functional analysis of human monocytes-derived dendritic cells loaded with a carbosilane dendrimer. Biomaterials, 2010, 31, 8749-8758.	5.7	46
187	Interaction of the prion protein fragment PrP 185–206 with biological membranes: effect on membrane permeability. Journal of Peptide Science, 2010, 16, 342-348.	0.8	10
188	Influence of Surface Functionality of Poly(propylene imine) Dendrimers on Protease Resistance and Propagation of the Scrapie Prion Protein. Biomacromolecules, 2010, 11, 1314-1325.	2.6	81
189	Haemolytic activity of polyamidoamine dendrimers and the protective role of humanÂserum albumin. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466, 1527-1534.	1.0	35
190	How to study dendriplexes I: Characterization. Journal of Controlled Release, 2009, 135, 186-197.	4.8	83
191	Binding Properties of Water-Soluble Carbosilane Dendrimers. Journal of Fluorescence, 2009, 19, 267-275.	1.3	21
192	The Immobilization of Gossypol Derivative on N-Polyvinylpyrrolidone Increases its Water Solubility and Modifies Membrane-Active Properties. Journal of Medicinal Chemistry, 2009, 52, 4119-4125.	2.9	13
193	Interactions between dendrimers and heparin and their implications for the anti-prion activity of dendrimers. New Journal of Chemistry, 2009, 33, 1087.	1.4	50
194	The Influence of Densely Organized Maltose Shells on the Biological Properties of Poly(propylene) Tj ETQq0 0 0 rgl 14, 7030-7041.	3T /Overloo 1.7	ck 10 Tf 50 135
195	Impact of PAMAM G2 and G6 dendrimers on bovine serum albumin (fatty acids free and loaded with) Tj ETQq1 1 0	.784314 r	gBT /Overlo
196	Characterization of carbosilane dendrimers as effective carriers of siRNA to HIV-infected lymphocytes. Journal of Controlled Release, 2008, 132, 55-64.	4.8	154
197	Analysis of Interaction between Dendriplexes and Bovine Serum Albumin. Biomacromolecules, 2007, 8, 2059-2062.	2.6	47
198	Influence of phosphorus dendrimers on the aggregation of the prion peptide PrP 185–208. Biochemical and Biophysical Research Communications, 2007, 364, 20-25.	1.0	65

#	Article	IF	CITATIONS
199	Water-soluble carbosilane dendrimers protect phosphorothioate oligonucleotides from binding to serum proteins. Organic and Biomolecular Chemistry, 2007, 5, 1886-1893.	1.5	55
200	EPR Study of the Interactions between Dendrimers and Peptides Involved in Alzheimer's and Prion Diseases. Macromolecular Bioscience, 2007, 7, 1065-1074.	2.1	81
201	Interaction between PAMAM 4.5 dendrimer, cadmium and bovine serum albumin: A study using equilibrium dialysis, isothermal titration calorimetry, zeta-potential and fluorescence. Colloids and Surfaces B: Biointerfaces, 2007, 58, 286-289.	2.5	26
202	Serum albumins have five sites for binding of cationic dendrimers. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 946-951.	1.1	70
203	Melatonin attenuates metabolic disorders due to streptozotocin-induced diabetes in rats. European Journal of Pharmacology, 2007, 569, 180-187.	1.7	91
204	Increased blood plasma hydrolysis of acetylsalicylic acid in type 2 diabetic patients: A role of plasma esterases. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 207-215.	1.1	34
205	Complex formation between endogenous toxin bilirubin and polyamidoamine dendrimers: A spectroscopic study. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 1021-1026.	1.1	8
206	Influence of heparin and dendrimers on the aggregation of two amyloid peptides related to Alzheimer's and prion diseases. Biochemical and Biophysical Research Communications, 2006, 339, 577-582.	1.0	108
207	Dendrimer–protein interactions studied by tryptophan room temperature phosphorescence. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1750-1756.	1.1	38
208	Cytotoxicity, haematotoxicity and genotoxicity of high molecular mass arborescent polyoxyethylene polymers with polyglycidol-block-containing shells. Cell Biology International, 2006, 30, 248-252.	1.4	33
209	The breakdown of bilayer lipid membranes by dendrimers. Cellular and Molecular Biology Letters, 2006, 11, 242-8.	2.7	30
210	The Interaction between Polycationic Poly-Lysine Dendrimers and Charged and Neutral Fluorescent Probes. Journal of Fluorescence, 2006, 17, 73-79.	1.3	5
211	Combined effect of low-power laser irradiation and anthraquinone anticancer drug aclarubicin on survival of immortalized cells: Comparison with mitoxantrone. Cell Biology International, 2006, 30, 645-652.	1.4	6
212	Cytotoxic and genotoxic effects of tert-butyl hydroperoxide on Chinese hamster B14 cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2005, 583, 189-197.	0.9	20
213	Calcium ionophore A23187 action on cardiac myocytes is accompanied by enhanced production of reactive oxygen species. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1740, 481-488.	1.8	39
214	Preliminary Evaluation of the Behavior of Fifth-Generation Thiophosphate Dendrimer in Biological Systems. Biomacromolecules, 2004, 5, 2007-2012.	2.6	30
215	Effect of Low-Intensity (3.75-25 J/cm2) Near-Infrared (810 nm) Laser Radiation on Red Blood Cell ATPase Activities and Membrane Structure. Photomedicine and Laser Surgery, 2004, 22, 111-117.	1.1	131
216	Hypochlorous acid-induced oxidative stress in Chinese hamster B14 cells: viability, DNA and protein damage and the protective action of melatonin. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2004, 559, 39-48.	0.9	39

#	Article	IF	CITATIONS
217	Interactions between PAMAM dendrimers and bovine serum albumin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1648, 115-126.	1.1	199
218	Low-Intensity Near-Infrared Laser Radiation-Induced Changes of Acetylcholinesterase Activity of Human Erythrocytes. Photomedicine and Laser Surgery, 2003, 21, 351-355.	1.1	29
219	Hypochlorous acid inhibits glutathione S-conjugate export from human erythrocytes. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1564, 479-486.	1.4	8
220	Phosphatidylserine content is a more important contributor than transmembrane potential to interactions of merocyanine 540 with lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1567, 176-182.	1.4	9
221	Hypochlorous acid-induced oxidative damage of human red blood cells: effects of tert-butyl hydroperoxide and nitrite on the HOCl reaction with erythrocytes. Bioelectrochemistry, 2002, 58, 127-135.	2.4	29
222	The contribution of phosphatidylserine partition and transmembrane potential to the interaction of merocyanine 540 with lipid bilayers. Cellular and Molecular Biology Letters, 2002, 7, 297.	2.7	3
223	The interaction of tryptophan and ANS with PAMAM dendrimers. Cellular and Molecular Biology Letters, 2002, 7, 1087-94.	2.7	21
224	Hypochlorous acid damages erythrocyte membrane proteins and alters lipid bilayer structure and fluidity. Free Radical Biology and Medicine, 2001, 30, 363-369.	1.3	41
225	Thermosensitivity of red blood cells from Down's syndrome individuals. Bioelectrochemistry, 2000, 52, 239-249.	2.4	9
226	Morphological Changes of Human Erythrocytes Induced by Cholesterol Sulphate. Clinical Biochemistry, 1998, 31, 73-79.	0.8	9
227	Activation of red blood cell glutathione peroxidase and morphological transformation of erythrocytes under the action of tertâ€butyl hydroperoxide. IUBMB Life, 1998, 44, 577-588.	1.5	6
228	Cholesterol sulfate induces changes in human erythrocyte thermostability. IUBMB Life, 1998, 46, 399-410.	1.5	2
229	THE BIOSTIMULATORY EFFECT OF RED LASER IRRADIATION ON PIG BLOOD PLATELET FUNCTION. Cell Biology International, 1998, 22, 245-248.	1.4	16
230	Effect of free fatty acids on erythrocyte morphology and membrane fluidity. IUBMB Life, 1997, 42, 123-133.	1.5	15
231	Acetylcholinesterase activity of normal and diabetic human erythrocyte membranes: The effect of oxidative agents. IUBMB Life, 1997, 42, 203-210.	1.5	2
232	The effect of oxidizing agents and diabetes mellitus on the human red blood cell membrane potential. Clinical Biochemistry, 1996, 29, 283-286.	0.8	22
233	Association between the glycation of erythrocyte membrane proteins and membrane fluidity. Clinical Biochemistry, 1988, 21, 49-51.	0.8	31
234	Effects of sugar alcohols and disaccharides in inducing the hexagonal phase and altering membrane properties: implications for diabetes mellitus. Biochimica Et Biophysica Acta - Biomembranes, 1988, 943, 485-492.	1.4	57

#	Article	IF	CITATIONS
235	Modulation of the bilayer to hexagonal phase transition and solvation of phosphatidylethanolamines in aqueous salt solutions. Biochemistry, 1988, 27, 8776-8779.	1.2	51
236	Interaction of Normal and Glycated Human Haemoglobin with Erythrocyte Membranes from Normal and Diabetic Individuals. Clinical Chemistry and Laboratory Medicine, 1988, 26, 809-13.	1.4	4
237	Changes in fluidity and composition of erythrocyte membranes and in composition of plasma lipids in Type I diabetes. British Journal of Haematology, 1986, 62, 111-116.	1.2	89
238	Engineered phosphorus dendrimers as powerful non-viral nanoplatforms for gene delivery: a great hope for the future of cancer therapeutics. Exploration of Targeted Anti-tumor Therapy, 0, , 50-61.	0.5	1