Julie M Clarke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9419901/publications.pdf

Version: 2024-02-01

279487 315357 7,725 36 23 38 citations h-index g-index papers 39 39 39 11442 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An acetateâ€yielding diet imprints an immune and antiâ€microbial programme against enteric infection. Clinical and Translational Immunology, 2021, 10, e1233.	1.7	23
2	Commensal microbe-derived acetate suppresses NAFLD/NASH development via hepatic FFAR2 signalling in mice. Microbiome, 2021 , 9 , 188 .	4.9	48
3	Microbiota-derived butyrate limits the autoimmune response by promoting the differentiation of follicular regulatory T cells. EBioMedicine, 2020, 58, 102913.	2.7	74
4	Effect of mucin 4 allele on susceptibility to experimental infection with enterotoxigenic F4 Escherichia coli in pigs fed experimental diets. Journal of Animal Science and Biotechnology, 2019, 10, 56.	2.1	15
5	Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nature Immunology, 2017, 18, 552-562.	7.0	551
6	Microbes, Metabolites and Health. , 2016, , 13-48.		0
7	Dietary butyrylated high-amylose starch reduces azoxymethane-induced colonic O 6 -methylguanine adducts in rats as measured by immunohistochemistry and high-pressure liquid chromatography. Nutrition Research, 2016, 36, 982-988.	1.3	8
8	Housing experimental rats in solidâ€based cages with digestible bedding may confound outcomes of nutritional studies. Journal of the Science of Food and Agriculture, 2015, 95, 2155-2158.	1.7	11
9	Lowering of Large Bowel Butyrate Levels in Healthy Populations Is Unlikely to Be Beneficial. Journal of Nutrition, 2015, 145, 1030-1031.	1.3	8
10	Butyrylated starch affects colorectal cancer markers beneficially and dose-dependently in genotoxin-treated rats. Cancer Biology and Therapy, 2014, 15, 1515-1523.	1.5	19
11	Dietary supplementation of propionylated starch to domestic cats provides propionic acid as gluconeogenic substrate potentially sparing the amino acid valine. Journal of Nutritional Science, 2014, 3, e16.	0.7	4
12	Genomic homeostasis is dysregulated in favour of apoptosis in the colonic epithelium of the azoxymethane treated rat. BMC Physiology, 2013, 13, 2.	3.6	11
13	Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 2013, 504, 446-450.	13.7	3,901
14	Tu2012 Esterified Starch As a Treatment for Acute Gastroenteritis - A Double Blind Randomized Controlled Trial. Gastroenterology, 2013, 144, S-904.	0.6	2
15	Butyrylated starch increases colonic butyrate concentration but has limited effects on immunity in healthy physically active individuals. Exercise Immunology Review, 2013, 19, 102-19.	0.4	34
16	Resistant Starches Protect against Colonic DNA Damage and Alter Microbiota and Gene Expression in Rats Fed a Western Diet. Journal of Nutrition, 2012, 142, 832-840.	1.3	103
17	Butyrate delivered by butyrylated starch increases distal colonic epithelial apoptosis in carcinogen-treated rats. Carcinogenesis, 2012, 33, 197-202.	1.3	79
18	Acetylated High Amylose Maize Starch Improves the Efficacy of Oral Rehydration Solution in a Rat Model of Cholera. Gastroenterology, 2011, 140, S-134.	0.6	2

#	Article	IF	Citations
19	Is the tissue persistence of O6-methyl- $2\hat{a}\in^2$ -deoxyguanosine an indicator of tumour formation in the gastrointestinal tract?. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2011, 721, 119-126.	0.9	10
20	Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature, 2011, 469, 543-547.	13.7	1,836
21	Dietary resistant and butyrylated starches have different effects on the faecal bacterial flora of azoxymethane-treated rats. British Journal of Nutrition, 2011, 105, 1480-1485.	1.2	27
22	Butyrate esterified to starch is released in the human gastrointestinal tract. American Journal of Clinical Nutrition, 2011, 94, 1276-1283.	2.2	99
23	Can indole-based extracts prevent colorectal cancer via early apoptotic pathways?. Cancer Biology and Therapy, 2010, 9, 380-382.	1.5	1
24	Butyrylated starch increases large bowel butyrate levels and lowers colonic smooth muscle contractility in rats. Nutrition Research, 2010, 30, 427-434.	1.3	36
25	Structural modifications of granular starch upon acylation with short-chain fatty acids. Food Hydrocolloids, 2009, 23, 1940-1946.	5.6	78
26	Effects of high-amylose maize starch and butyrylated high-amylose maize starch on azoxymethane-induced intestinal cancer in rats. Carcinogenesis, 2008, 29, 2190-2194.	1.3	96
27	Butyrylated starch protects colonocyte DNA against dietary protein-induced damage in rats. Carcinogenesis, 2008, 29, 2169-2174.	1.3	60
28	Excretion of starch and esterified short-chain fatty acids by ileostomy subjects after the ingestion of acylated starches. American Journal of Clinical Nutrition, 2007, 86, 1146-1151.	2.2	75
29	Butyrylated starch is less susceptible to enzymic hydrolysis and increases large-bowel butyrate more than high-amylose maize starch in the rat. British Journal of Nutrition, 2006, 96, 276-282.	1.2	49
30	Use of the sup 13 /sup C-sucrose breath test to assess chemotherapy-induced small intestinal mucositis in the rat. Cancer Biology and Therapy, 2006, 5, 34-38.	1.5	46
31	Exposure of oral mucosa to bioactive milk factors reduces severity of chemotherapy-induced mucositis in the hamster. Oral Oncology, 2002, 38, 478-485.	0.8	41
32	The effect of keratinocyte growth factor on tumour growth and small intestinal mucositis after chemotherapy in the rat with breast cancer. Cancer Chemotherapy and Pharmacology, 2002, 50, 53-58.	1.1	85
33	Effect of interleukin- 11 on ameliorating intestinal damage after methotrexate treatment of breast cancer in rats. Digestive Diseases and Sciences, 2002, 47, 2751-2757.	1.1	89
34	Evaluation of bovine lactoferrin as a topical therapy for chemotherapy-induced mucositis in the golden Syrian hamster. Oral Oncology, 1999, 35, 197-202.	0.8	19
35	Plasma lipids and large bowel volatile fatty acids in pigs fed on white rice, brown rice and rice bran. British Journal of Nutrition, 1993, 70, 503-513.	1.2	57
36	Dietary Fat and Fiber Alter Large Bowel and Portal Venous Volatile Fatty Acids and Plasma Cholesterol but Not Biliary Steroids in Pigs. Journal of Nutrition, 1993, 123, 133-143.	1.3	58