
Cristina Eugenia Hilde Porta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9419372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of Fibrin Scaffolds to Study Friction in Cultured Mesothelial Cells. International Journal of Molecular Sciences, 2022, 23, 4980.	1.8	1
2	Role of MUC1 in lubrication of pleural mesothelial cells cultured on fibrine gel. Tissue and Cell, 2021, 70, 101503.	1.0	2
3	In memoriam Emilio Agostoni. Respiratory Physiology and Neurobiology, 2021, 294, 103772.	0.7	0
4	Effects of Creatine Treatment on Jejunal Phenotypes in a Rat Model of Acidosis. Antioxidants, 2019, 8, 225.	2.2	2
5	Chronic Acidosis and Oxidative Stress: Protective Effect of Creatine Oral Administration on Rat Jejunum. Journal of Nutrition & Food Sciences, 2019, 09, .	1.0	Ο
6	Pleural Lubrication. Lubricants, 2016, 4, 15.	1.2	5
7	Response to the letter to the Editor by Negrini et al Respiratory Physiology and Neurobiology, 2015, 210, 53.	0.7	Ο
8	Pleural liquid and kinetic friction coefficient of mesothelium after mechanical ventilation. Respiratory Physiology and Neurobiology, 2015, 206, 1-3.	0.7	3
9	Pleural mesothelium lubrication after phospholipase treatment. Respiratory Physiology and Neurobiology, 2014, 194, 49-53.	0.7	9
10	Lubricating recovery of damaged pleural mesothelium: effect of time and of phosphatidylcholines. Respiratory Physiology and Neurobiology, 2014, 203, 116-120.	0.7	1
11	Pleural mesothelium lubrication after hyaluronidase, neuraminidase or pronase treatment. Respiratory Physiology and Neurobiology, 2013, 188, 60-65.	0.7	13
12	Mixed lubrication after rewetting of blotted pleural mesothelium. Respiratory Physiology and Neurobiology, 2013, 185, 369-373.	0.7	10
13	Effects of creatine in a rat intestinal model of ischemia/reperfusion injury. European Journal of Nutrition, 2012, 51, 375-384.	1.8	11
14	Lubricating effect of sialomucin and hyaluronan on pleural mesothelium. Respiratory Physiology and Neurobiology, 2012, 180, 34-39.	0.7	10
15	Acute and chronic acidosis influence on antioxidant equipment and transport proteins of rat jejunal enterocyte. Cell Biology International, 2011, 35, 345-353.	1.4	5
16	Evidence for Na+–glucose cotransporter in type I alveolar epithelium. Histochemistry and Cell Biology, 2010, 134, 129-136.	0.8	9
17	β2-Adrenergic receptors and G-protein-coupled receptor kinase 2 in rabbit pleural mesothelium. Respiratory Physiology and Neurobiology, 2010, 173, 189-191.	0.7	2
18	Reply to: Letter to the Editor on †Na+ and glucose transport in mesothelium of species with thick visceral pleura'. Respiratory Physiology and Neurobiology, 2008, 164, 290.	0.7	0

#	Article	IF	CITATIONS
19	Na+–glucose cotransporter is also expressed in mesothelium of species with thick visceral pleura. Respiratory Physiology and Neurobiology, 2008, 161, 261-266.	0.7	5
20	Pleural liquid during hemorrhagic hypotension. Respiratory Physiology and Neurobiology, 2007, 155, 184-192.	0.7	1
21	Expression of Na+–glucose cotransporter (SGLT1) in visceral and parietal mesothelium of rabbit pleura. Respiratory Physiology and Neurobiology, 2007, 159, 68-75.	0.7	9
22	Oxidative stress reduces transintestinal transports and (Na+, K+)-ATPase activity in rat jejunum. Archives of Biochemistry and Biophysics, 2007, 466, 300-307.	1.4	9
23	Distribution and mixing of a liquid bolus in pleural space. Respiratory Physiology and Neurobiology, 2006, 150, 287-299.	0.7	1
24	Further analysis of transcytosis of free polypeptides and polypeptide-coated nanobeads in rabbit nasal mucosa. Journal of Applied Physiology, 2001, 91, 211-217.	1.2	4
25	Inhibitors of the Cl - /HCO 3 - exchanger activate an anion channel with similar features in the epithelial cells of rabbit gallbladder: patch-clamp analysis. Pflugers Archiv European Journal of Physiology, 2001, 441, 467-473.	1.3	5
26	Inhibitors of the Cl - /HCO 3 - exchanger activate an apical anion conductance with similar features in the epithelial cells of rabbit gallbladder: analysis in intact epithelium. Pflugers Archiv European Journal of Physiology, 2001, 441, 456-466.	1.3	6
27	Diphenylamine-2-carboxylic acid (DPC), usually an inhibitor of Cl– and non-selective cation channels, inhibits Cl–/HCO3 – exchange and opens Cl– and cation conductances in rabbit gallbladder epithelium. Pflugers Archiv European Journal of Physiology, 2001, 442, 409-419.	1.3	6
28	Increase in intrinsic anion conductance upon inhibition of the electroneutral Clâ^'/HCO3â^' exchanger: effect of CO2/HCO3â^'. Bioelectrochemistry, 2001, 54, 137-143.	2.4	0
29	Apical Na + -Cl â^' Symport in Rabbit Gallbladder Epithelium: A Thiazide-Sensitive Cotransporter (TSC). Journal of Membrane Biology, 2000, 176, 53-65.	1.0	7
30	Rabbit nasal mucosa: nanospheres coated with polypeptides bound to specific anti-polypeptide IgG are better transported than nanospheres coated with polypeptides or IgG alone. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1466, 115-124.	1.4	6
31	Different kinds of polypeptides and polypeptide-coated nanoparticles are accepted by the selective transcytosis shown in the rabbit nasal mucosa. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1416, 31-38.	1.4	11
32	Identification of particular epithelial areas and cells that transport polypeptide-coated nanoparticles in the nasal respiratory mucosa of the rabbit. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1416, 39-47.	1.4	31
33	Relationship between polypeptide transcytosis and lymphoid tissue in the rabbit nasal mucosa. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1369, 287-294.	1.4	12
34	Endocytosis inhibitors abolish the active transport of polypeptides in the mucosa of the nasal upper concha of the rabbit. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1280, 27-33.	1.4	26
35	The active transport of polypeptides in the rabbit nasal mucosa is supported by a specific vesicular transport inhibited by cytochalasin D. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1283, 101-105.	1.4	14
36	Hydrochlorothiazide action on the apical Cl?, Ca2+ and K+ conductances in rabbit gallbladder epithelium. Presence of an apamin-sensitive, Ca2+-activated K+ conductance. Journal of Membrane Biology, 1995, 147, 159-71.	1.0	8

#	Article	IF	CITATIONS
37	Selective transport of microparticles across Peyer's patch follicleâ€associated M cells from mice and rats. Experimental Physiology, 1995, 80, 735-743.	0.9	90
38	XLV Annual General Congress of the Societ� Italiana di Fisiologia (Autumn Meeting) 8?10 September 1993, Pavia, Italy. Pflugers Archiv European Journal of Physiology, 1994, 426, R159-R188.	1.3	2
39	Hydrochlorothiazide enhances the apical Cl? backflux in rabbit gallbladder epithelium: Radiochemical analysis. Journal of Membrane Biology, 1994, 141, 29-42.	1.0	6
40	Bicarbonate transport, double ion exchange and Na+-Cl- symport are all inhibited by hydrochlorothiazide in the apical membrane of the epithelium of rabbit gallbladder. Rendiconti Lincei, 1993, 4, 179-185.	1.0	2
41	Sulphates and phosphates reduce the sensitivity to hydrochlorothiazide (HCTZ) of the transepithelial NaCl transport in rabbit gallbladder. Rendiconti Lincei, 1993, 4, 187-191.	1.0	0
42	Confocal analysis of fluorescent bead uptake by mouse Peyer's patch follicleâ€associated M cells. Experimental Physiology, 1992, 77, 929-932.	0.9	62
43	Sodium salt neutral entry at the apical membrane of the gallbladder epithelium: Comparing different species. Comparative Biochemistry and Physiology A, Comparative Physiology, 1992, 103, 619-633.	0.7	9
44	Nature of the neutral Na+-Cl? coupled entry at the apical membrane of rabbit gallbladder epithelium: IV. Na+/H+, Cl?/HCO 3 ? double exchange, hydrochlorothiazide-sensitive Na+-Cl? symport and Na+-K+-2Cl? cotransport are all involved. Journal of Membrane Biology, 1992, 129, 221-35.	1.0	20
45	Transepithelial electrophysiological parameters in rabbit respiratory nasal mucosa isolated In vitro. Comparative Biochemistry and Physiology A, Comparative Physiology, 1991, 99, 361-364.	0.7	12