Qingliang Liao

List of Publications by Citations

Source: https://exaly.com/author-pdf/9419305/qingliang-liao-publications-by-citations.pdf

Version: 2024-04-05

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

102
papers5,410
citations43
h-index72
g-index105
ext. papers6,803
ext. citations14.4
avg, IF6
L-index

#	Paper	IF	Citations
102	Flexible and Highly Sensitive Strain Sensors Fabricated by Pencil Drawn for Wearable Monitor. <i>Advanced Functional Materials</i> , 2015 , 25, 2395-2401	15.6	359
101	Single-Atom Vacancy Defect to Trigger High-Efficiency Hydrogen Evolution of MoS. <i>Journal of the American Chemical Society</i> , 2020 , 142, 4298-4308	16.4	287
100	Stretchable-Rubber-Based Triboelectric Nanogenerator and Its Application as Self-Powered Body Motion Sensors. <i>Advanced Functional Materials</i> , 2015 , 25, 3688-3696	15.6	261
99	A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. <i>Science Advances</i> , 2016 , 2, e1501624	14.3	221
98	A Highly Stretchable ZnO@Fiber-Based Multifunctional Nanosensor for Strain/Temperature/UV Detection. <i>Advanced Functional Materials</i> , 2016 , 26, 3074-3081	15.6	195
97	Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. <i>Nature Energy</i> , 2017 , 2,	62.3	186
96	Stretchable and Waterproof Self-Charging Power System for Harvesting Energy from Diverse Deformation and Powering Wearable Electronics. <i>ACS Nano</i> , 2016 , 10, 6519-25	16.7	160
95	Ultrasensitive and stretchable resistive strain sensors designed for wearable electronics. <i>Materials Horizons</i> , 2017 , 4, 502-510	14.4	151
94	Electromagnetic Shielding Hybrid Nanogenerator for Health Monitoring and Protection. <i>Advanced Functional Materials</i> , 2018 , 28, 1703801	15.6	139
93	Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. <i>Nano Research</i> , 2016 , 9, 2018-2025	10	136
92	Self-Powered Trajectory, Velocity, and Acceleration Tracking of a Moving Object/Body using a Triboelectric Sensor. <i>Advanced Functional Materials</i> , 2014 , 24, 7488-7494	15.6	135
91	Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS homojunction photodiode. <i>Nature Communications</i> , 2017 , 8, 15881	17.4	129
90	Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4-nanosheets/reduced-graphene-oxide composite. <i>Nano Research</i> , 2017 , 10, 980-990	10	127
89	Self-powered artificial electronic skin for high-resolution pressure sensing. <i>Nano Energy</i> , 2017 , 32, 389-3	3 9 6.1	101
88	Recent Advances in Triboelectric Nanogenerator-Based Health Monitoring. <i>Advanced Functional Materials</i> , 2019 , 29, 1808849	15.6	97
87	Interface Engineering for Modulation of Charge Carrier Behavior in ZnO Photoelectrochemical Water Splitting. <i>Advanced Functional Materials</i> , 2019 , 29, 1808032	15.6	95
86	Deciphering the NH4PbI3 Intermediate Phase for Simultaneous Improvement on Nucleation and Crystal Growth of Perovskite. <i>Advanced Functional Materials</i> , 2017 , 27, 1701804	15.6	89

(2015-2019)

85	Engineering an Earth-Abundant Element-Based Bifunctional Electrocatalyst for Highly Efficient and Durable Overall Water Splitting. <i>Advanced Functional Materials</i> , 2019 , 29, 1807031	15.6	89	
84	Service Behavior of Multifunctional Triboelectric Nanogenerators. <i>Advanced Materials</i> , 2017 , 29, 16067	034	88	
83	High on-off ratio improvement of ZnO-based forming-free memristor by surface hydrogen annealing. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2015 , 7, 7382-8	9.5	83	
82	Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene. <i>Nano Research</i> , 2018 , 11, 2689-2704	10	82	
81	Flexible, Cuttable, and Self-Waterproof Bending Strain Sensors Using Microcracked Gold Nanofilms@Paper Substrate. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 4151-4158	9.5	81	
80	Optoelectronics: All-Inorganic Perovskite Quantum Dot-Monolayer MoS2 Mixed-Dimensional van der Waals Heterostructure for Ultrasensitive Photodetector (Adv. Sci. 12/2018). <i>Advanced Science</i> , 2018 , 5, 1870078	13.6	78	
79	Strain Modulation in Graphene/ZnO Nanorod Film Schottky Junction for Enhanced Photosensing Performance. <i>Advanced Functional Materials</i> , 2016 , 26, 1347-1353	15.6	77	
78	Graphdiyne: Bridging SnO and Perovskite in Planar Solar Cells. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11573-11582	16.4	76	
77	In Situ Preparation of Cobalt Nanoparticles Decorated in N-Doped Carbon Nanofibers as Excellent Electromagnetic Wave Absorbers. <i>ACS Applied Materials & Applied Mater</i>	9.5	76	
76	Interfacial Charge Behavior Modulation in Perovskite Quantum Dot-Monolayer MoS2 0D-2D Mixed-Dimensional van der Waals Heterostructures. <i>Advanced Functional Materials</i> , 2018 , 28, 1802015	15.6	75	
75	Gold nanoparticle/ZnO nanorod hybrids for enhanced reactive oxygen species generation and photodynamic therapy. <i>Nano Research</i> , 2015 , 8, 2004-2014	10	68	
74	Temperature-dependent electrochemical capacitive performance of the Fe2O3 hollow nanoshuttles as supercapacitor electrodes. <i>Journal of Colloid and Interface Science</i> , 2016 , 466, 291-6	9.3	67	
73	Graphene-Based Mixed-Dimensional van der Waals Heterostructures for Advanced Optoelectronics. <i>Advanced Materials</i> , 2019 , 31, e1806411	24	67	
72	Development, applications, and future directions of triboelectric nanogenerators. <i>Nano Research</i> , 2018 , 11, 2951-2969	10	66	
71	An Amphiphobic Hydraulic Triboelectric Nanogenerator for a Self-Cleaning and Self-Charging Power System. <i>Advanced Functional Materials</i> , 2018 , 28, 1803117	15.6	64	
70	ZnO nanostructures in enzyme biosensors. <i>Science China Materials</i> , 2015 , 58, 60-76	7.1	58	
69	Self-powered user-interactive electronic skin for programmable touch operation platform. <i>Science Advances</i> , 2020 , 6, eaba4294	14.3	55	
68	Self-Recovering Triboelectric Nanogenerator as Active Multifunctional Sensors. <i>Advanced Functional Materials</i> , 2015 , 25, 6489-6494	15.6	54	

67	Nonenzymatic Glucose Sensor Based on In Situ Reduction of Ni/NiO-Graphene Nanocomposite. <i>Sensors</i> , 2016 , 16,	3.8	54
66	Strain-Engineered van der Waals Interfaces of Mixed-Dimensional Heterostructure Arrays. <i>ACS Nano</i> , 2019 , 13, 9057-9066	16.7	53
65	Kelvin probe force microscopy for perovskite solar cells. <i>Science China Materials</i> , 2019 , 62, 776-789	7:1	52
64	The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction. <i>Nano Research</i> , 2016 , 9, 372-379	10	47
63	Functional nanogenerators as vibration sensors enhanced by piezotronic effects. <i>Nano Research</i> , 2014 , 7, 190-198	10	47
62	Highly Robust and Self-Powered Electronic Skin Based on Tough Conductive Self-Healing Elastomer. <i>ACS Nano</i> , 2020 , 14, 9066-9072	16.7	47
61	Defect-Engineered Atomically Thin MoS Homogeneous Electronics for Logic Inverters. <i>Advanced Materials</i> , 2020 , 32, e1906646	24	46
60	Self-Healing Originated van der Waals Homojunctions with Strong Interlayer Coupling for High-Performance Photodiodes. <i>ACS Nano</i> , 2019 , 13, 3280-3291	16.7	43
59	Reduced Graphene Oxide Functionalized with Cobalt Ferrite Nanocomposites for Enhanced Efficient and Lightweight Electromagnetic Wave Absorption. <i>Scientific Reports</i> , 2016 , 6, 32381	4.9	43
58	A-Site Management Prompts the Dynamic Reconstructed Active Phase of Perovskite Oxide OER Catalysts. <i>Advanced Energy Materials</i> , 2021 , 11, 2003755	21.8	42
57	Ultralight, self-powered and self-adaptive motion sensor based on triboelectric nanogenerator for perceptual layer application in Internet of things. <i>Nano Energy</i> , 2018 , 48, 312-319	17.1	39
56	Strain modulation on graphene/ZnO nanowire mixed-dimensional van der Waals heterostructure for high-performance photosensor. <i>Nano Research</i> , 2017 , 10, 3476-3485	10	37
55	Novel perovskite/TiO2/Si trilayer heterojunctions for high-performance self-powered ultraviolet-visible-near infrared (UV-Vis-NIR) photodetectors. <i>Nano Research</i> , 2018 , 11, 1722-1730	10	37
54	A-Site Management for Highly Crystalline Perovskites. <i>Advanced Materials</i> , 2020 , 32, e1904702	24	37
53	Bioinspired Tribotronic Resistive Switching Memory for Self-Powered Memorizing Mechanical Stimuli. <i>ACS Applied Materials & Acs Applied & Ac</i>	9.5	32
52	Design and tailoring of patterned ZnO nanostructures for energy conversion applications. <i>Science China Materials</i> , 2017 , 60, 793-810	7.1	31
51	Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions. <i>Nature Communications</i> , 2021 , 12, 1522	17.4	31
50	CuNiO nanoparticles assembled on graphene as an effective platform for enzyme-free glucose sensing. <i>Analytica Chimica Acta</i> , 2015 , 858, 49-54	6.6	29

(2020-2020)

	49	Emerging Conductive Atomic Force Microscopy for Metal Halide Perovskite Materials and Solar Cells. <i>Advanced Energy Materials</i> , 2020 , 10, 1903922	21.8	27
	48	Hidden Vacancy Benefit in Monolayer 2D Semiconductors. <i>Advanced Materials</i> , 2021 , 33, e2007051	24	27
	47	Ligand Engineering for Improved All-Inorganic Perovskite Quantum Dot-MoS2 Monolayer Mixed Dimensional van der Waals Phototransistor. <i>Small Methods</i> , 2019 , 3, 1900117	12.8	26
	46	A self-powered strain senor based on a ZnO/PEDOT:PSS hybrid structure. <i>RSC Advances</i> , 2013 , 3, 17011	3.7	26
	45	Programmable devices based on reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. <i>Nature Electronics</i> , 2020 , 3, 630-637	28.4	26
	44	Fingerprint-inspired electronic skin based on triboelectric nanogenerator for fine texture recognition. <i>Nano Energy</i> , 2021 , 85, 106001	17.1	26
	43	Strain Engineering in 2D Material-Based Flexible Optoelectronics Small Methods, 2021 , 5, e2000919	12.8	26
	42	Facile synthesis of NiCo2S4 nanowire arrays on 3D graphene foam for high-performance electrochemical capacitors application. <i>Journal of Materials Science</i> , 2018 , 53, 10292-10301	4.3	25
	41	3D Holey-Graphene Architecture Expedites Ion Transport Kinetics to Push the OER Performance. <i>Advanced Energy Materials</i> , 2020 , 10, 2001005	21.8	22
	40	Solid and macroporous FeC/N-C nanofibers with enhanced electromagnetic wave absorbability. <i>Scientific Reports</i> , 2018 , 8, 16832	4.9	22
	39	Ferroelectric polarization-enhanced charge separation in a vanadium-doped ZnO photoelectrochemical system. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 1533-1539	6.8	21
,	38	Manipulation of Perovskite Crystallization Kinetics via Lewis Base Additives. <i>Advanced Functional Materials</i> , 2021 , 31, 2009425	15.6	21
	37	Single-Atom Engineering to Ignite 2D Transition Metal Dichalcogenide Based Catalysis: Fundamentals, Progress, and Beyond. <i>Chemical Reviews</i> , 2021 ,	68.1	20
	36	Atomic-Thin ZnO Sheet for Visible-Blind Ultraviolet Photodetection. <i>Small</i> , 2020 , 16, e2005520	11	19
	35	Gate-Controlled Polarity-Reversible Photodiodes with Ambipolar 2D Semiconductors. <i>Advanced Functional Materials</i> , 2021 , 31, 2007559	15.6	13
	34	Phase reconfiguration of multivalent nickel sulfides in hydrogen evolution. <i>Energy and Environmental Science</i> ,	35.4	9
	33	Record-high saturation current in end-bond contacted monolayer MoS2 transistors. <i>Nano Research</i> , 2022 , 15, 475	10	9
	32	Synergistic engineering of dielectric and magnetic losses in M-Co/RGO nanocomposites for use in high-performance microwave absorption. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 3013-3021	7.8	8

31	Ultra-stable ZnO nanobelts in electrochemical environments. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 430	1-4.37	7
30	Direct Charge Trapping Multilevel Memory with Graphdiyne/MoS Van der Waals Heterostructure. <i>Advanced Science</i> , 2021 , 8, e2101417	13.6	7
29	Grain Boundary Perfection Enabled by Pyridinic Nitrogen Doped Graphdiyne in Hybrid Perovskite. <i>Advanced Functional Materials</i> , 2021 , 31, 2104633	15.6	6
28	Thermo-responsive phase-transition polymer grafted magnetic FePt nanoparticles with tunable critical temperature for controlled drug release. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 1609-1617	7.8	6
27	Single-Atom Vacancy Doping in Two-Dimensional Transition Metal Dichalcogenides. <i>Accounts of Materials Research</i> , 2021 , 2, 655-668	7.5	6
26	A Universal Strategy for Improving the Energy Transmission Efficiency and Load Power of Triboelectric Nanogenerators. <i>Advanced Energy Materials</i> , 2019 , 9, 1901881	21.8	5
25	AFM investigation of nanomechanical properties of ZnO nanowires. <i>RSC Advances</i> , 2015 , 5, 33445-3344	93.7	5
24	Edge induced band bending in van der Waals heterojunctions: A first principle study. <i>Nano Research</i> , 2020 , 13, 701-708	10	5
23	Triboelectricity-assisted transfer of graphene for flexible optoelectronic applications. <i>Nano Research</i> , 2016 , 9, 899-907	10	5
22	Ultrathin strain-gated field effect transistor based on In-doped ZnO nanobelts. <i>APL Materials</i> , 2017 , 5, 086111	5.7	5
21	Interpretation of Rubidium-based Perovskite Recipes towards Electronic Passivation and Ion Diffusion Mitigation <i>Advanced Materials</i> , 2022 , e2109998	24	5
20	Interface Engineering in 1D ZnO-Based Heterostructures for Photoelectrical Devices. <i>Advanced Functional Materials</i> ,2106887	15.6	5
19	Molecule-Upgraded van der Waals Contacts for Schottky-Barrier-Free Electronics. <i>Advanced Materials</i> , 2021 , 33, e2104935	24	5
18	Graphdiyne: Bridging SnO2 and Perovskite in Planar Solar Cells. <i>Angewandte Chemie</i> , 2020 , 132, 11670-	1 <u>ქ.</u> 679	4
17	Enhanced field emission properties of graphene-based cathodes fabricated by ultrasonic atomization spray <i>RSC Advances</i> , 2018 , 8, 16207-16213	3.7	4
16	Photovoltaics: Deciphering the NH4PbI3 Intermediate Phase for Simultaneous Improvement on Nucleation and Crystal Growth of Perovskite (Adv. Funct. Mater. 30/2017). <i>Advanced Functional Materials</i> , 2017 , 27,	15.6	4
15	Tough and Degradable Self-Healing Elastomer from Synergistic Soft-Hard Segments Design for Biomechano-Robust Artificial Skin. <i>ACS Nano</i> , 2021 ,	16.7	4
14	Interface Engineering for High-Performance Photoelectrochemical Cells via Atomic Layer Deposition Technique. <i>Energy Technology</i> , 2021 , 9, 2000819	3.5	4

LIST OF PUBLICATIONS

13	All-van-der-Waals Barrier-Free Contacts for High-Mobility Transistors <i>Advanced Materials</i> , 2022 , e210	95224	4
12	Van Der Waals Heterostructures: Interfacial Charge Behavior Modulation in Perovskite Quantum Dot-Monolayer MoS2 0D-2D Mixed-Dimensional van der Waals Heterostructures (Adv. Funct. Mater. 34/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870239	15.6	3
11	Point defect induced intervalley scattering for the enhancement of interlayer electron transport in bilayer MoS homojunctions. <i>Nanoscale</i> , 2020 , 12, 9859-9865	7.7	2
10	Broadband electromagnetic wave absorption properties and mechanism of MoS2/rGO nanocomposites. <i>Materials Chemistry Frontiers</i> ,	7.8	2
9	Fully Organic Self-Powered Electronic Skin with Multifunctional and Highly Robust Sensing Capability. <i>Research</i> , 2021 , 2021, 9801832	7.8	2
8	Information accessibility oriented self-powered and ripple-inspired fingertip interactors with auditory feedback. <i>Nano Energy</i> , 2021 , 87, 106117	17.1	2
7	A van der Waals Ferroelectric Tunnel Junction for Ultrahigh-Temperature Operation Memory <i>Small Methods</i> , 2022 , e2101583	12.8	2
6	Architecture Design and Interface Engineering of Self-assembly VS/rGO Heterostructures for Ultrathin Absorbent <i>Nano-Micro Letters</i> , 2022 , 14, 67	19.5	2
5	Endogenous Synergistic Enhanced Self-Powered Photodetector via Multi-Effect Coupling Strategy toward High-Efficiency Ultraviolet Communication. <i>Advanced Functional Materials</i> ,2202184	15.6	2
4	Flexible Triboelectric Nanogenerators 2018 , 383-423		1
3	Calibration on force upon the surface of single ZnO nanowire applied by AFM tip with different scanning angles. <i>RSC Advances</i> , 2015 , 5, 47309-47313	3.7	1
2	Perovskite Crystallization: A-Site Management for Highly Crystalline Perovskites (Adv. Mater. 4/2020). <i>Advanced Materials</i> , 2020 , 32, 2070031	24	
1	Interface Engineering for High-Performance Photoelectrochemical Cells via Atomic Layer Deposition Technique. <i>Energy Technology</i> , 2021 , 9, 2170023	3.5	