Stephen K Wilke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9419281/publications.pdf Version: 2024-02-01

STEDHEN K WILKE

#	Article	IF	CITATIONS
1	A Combined Machine Learning and High-Energy X-ray Diffraction Approach to Understanding Liquid and Amorphous Metal Oxides. Journal of the Physical Society of Japan, 2022, 91, .	0.7	7
2	Containerless Techniques for in-situ X-Ray Measurements on Materials in Extreme Conditions. Journal of the Physical Society of Japan, 2022, 91, .	0.7	5
3	Hard x-ray methods for studying the structure of amorphous thin films and bulk glassy oxides. Journal of Physics Condensed Matter, 2021, 33, 194001.	0.7	4
4	Evolution of directionally freeze-cast Fe2O3 and Fe2O3+NiO green bodies during reduction and sintering to create lamellar Fe and Fe-20Ni foams. Journal of Alloys and Compounds, 2021, 889, 161707.	2.8	2
5	In operando tomography reveals degradation mechanisms in lamellar iron foams during redox cycling at 800°C. Journal of Power Sources, 2020, 448, 227463.	4.0	21
6	Effects of pore morphology on the cyclical oxidation/reduction of iron foams created via camphene-based freeze casting. Journal of Alloys and Compounds, 2020, 845, 156278.	2.8	17
7	Structure–processing relationships of freeze-cast iron foams fabricated with various solidification rates and post-casting heat treatment. Journal of Materials Research, 2020, 35, 2587-2596.	1.2	7
8	Small- and Wide-Angle X-ray Scattering Studies of Liquid–Liquid Phase Separation in Silicate Melts. ACS Earth and Space Chemistry, 2020, 4, 1888-1894.	1.2	7
9	Fe–Ni foams self-heal during redox cycling <i>via</i> reversible formation/homogenization of a ductile Ni scaffold. Journal of Materials Chemistry A, 2020, 8, 19375-19386.	5.2	13
10	Hierarchical Structural Changes During Redox Cycling of Fe-Based Lamellar Foams Containing YSZ, CeO ₂ , or ZrO ₂ . ACS Applied Materials & Interfaces, 2020, 12, 27190-27201.	4.0	10
11	Finite Element Model for Coupled Diffusion and Elastoplastic Deformation during High-Temperature Oxidation of Fe to FeO. Journal of the Electrochemical Society, 2020, 167, 080532.	1.3	6
12	Structural evolution of directionally freeze-cast iron foams during oxidation/reduction cycles. Acta Materialia, 2019, 162, 90-102.	3.8	33
13	Thermal State of Charge Estimation in Phase Change Composites for Passively Cooled Lithium-Ion Battery Packs. IEEE Transactions on Industry Applications, 2018, 54, 426-436.	3.3	23
14	Energy Storage Systems for Smart Grid Applications. , 2017, , 161-192.		3
15	Highâ€ŧemperature structural stability of ceriaâ€based inverse opals. Journal of the American Ceramic Society, 2017, 100, 2659-2668.	1.9	4
16	Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study. Journal of Power Sources, 2017, 340, 51-59.	4.0	329
17	Semi-Empirical Modeling of Capacity Fade: A Practical Approach for Battery Pack Manufacturers. ECS Transactions, 2016, 73, 109-119.	0.3	1
18	Semi-Empirical Modeling of Capacity Fade: A Practical Approach for Battery Pack Manufacturers. ECS Meeting Abstracts, 2016, , .	0.0	0

#	Article	IF	CITATIONS
19	Experimental validation of a 0-D numerical model for phase change thermal management systems in lithium-ion batteries. Journal of Power Sources, 2015, 287, 211-219.	4.0	44
20	Polymer sphere lithography for solid oxide fuel cells: a route to functional, well-defined electrode structures. Journal of Materials Chemistry, 2010, 20, 2190.	6.7	24