Joanne C White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9418956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116, 55-72.	4.9	771
2	Current status of Landsat program, science, and applications. Remote Sensing of Environment, 2019, 225, 127-147.	4.6	586
3	A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sensing of Environment, 2009, 113, 1613-1627.	4.6	567
4	Lidar sampling for large-area forest characterization: A review. Remote Sensing of Environment, 2012, 121, 196-209.	4.6	553
5	The global Landsat archive: Status, consolidation, and direction. Remote Sensing of Environment, 2016, 185, 271-283.	4.6	505
6	Remote Sensing Technologies for Enhancing Forest Inventories: A Review. Canadian Journal of Remote Sensing, 2016, 42, 619-641.	1.1	493
7	Landsat continuity: Issues and opportunities for land cover monitoring. Remote Sensing of Environment, 2008, 112, 955-969.	4.6	449
8	Surveying mountain pine beetle damage of forests: A review of remote sensing opportunities. Forest Ecology and Management, 2006, 221, 27-41.	1.4	325
9	Pixel-Based Image Compositing for Large-Area Dense Time Series Applications and Science. Canadian Journal of Remote Sensing, 2014, 40, 192-212.	1.1	302
10	The role of LiDAR in sustainable forest management. Forestry Chronicle, 2008, 84, 807-826.	0.5	291
11	Forest Monitoring Using Landsat Time Series Data: A Review. Canadian Journal of Remote Sensing, 2014, 40, 362-384.	1.1	274
12	Land cover 2.0. International Journal of Remote Sensing, 2018, 39, 4254-4284.	1.3	261
13	A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sensing of Environment, 2017, 194, 303-321.	4.6	250
14	The Utility of Image-Based Point Clouds for Forest Inventory: A Comparison with Airborne Laser Scanning. Forests, 2013, 4, 518-536.	0.9	249
15	Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. Remote Sensing of Environment, 2009, 113, 1988-1999.	4.6	244
16	An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites. Remote Sensing of Environment, 2015, 158, 220-234.	4.6	243
17	Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sensing of Environment, 2015, 170, 121-132.	4.6	226
18	Monitoring Canada's forests. Part 1: Completion of the EOSD land cover project. Canadian Journal of Remote Sensing, 2008, 34, 549-562.	1.1	199

#	Article	IF	CITATIONS
19	Assessment of QuickBird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation. Remote Sensing of Environment, 2006, 103, 67-80.	4.6	183
20	A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach. Forestry Chronicle, 2013, 89, 722-723.	0.5	181
21	Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring. International Journal of Digital Earth, 2016, 9, 1035-1054.	1.6	175
22	Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots. Remote Sensing of Environment, 2018, 209, 90-106.	4.6	171
23	Airborne laser scanning and digital stereo imagery measures of forest structure: comparative results and implications to forest mapping and inventory update. Canadian Journal of Remote Sensing, 2013, 39, 382-395.	1.1	165
24	Virtual constellations for global terrestrial monitoring. Remote Sensing of Environment, 2015, 170, 62-76.	4.6	158
25	Disturbance-Informed Annual Land Cover Classification Maps of Canada's Forested Ecosystems for a 29-Year Landsat Time Series. Canadian Journal of Remote Sensing, 2018, 44, 67-87.	1.1	146
26	Trends in post-disturbance recovery rates of Canada's forests following wildfire and harvest. Forest Ecology and Management, 2016, 361, 194-207.	1.4	139
27	Characterizing boreal forest wildfire with multi-temporal Landsat and LIDAR data. Remote Sensing of Environment, 2009, 113, 1540-1555.	4.6	132
28	Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101, 89-101.	4.9	132
29	Estimating the probability of mountain pine beetle red-attack damage. Remote Sensing of Environment, 2006, 101, 150-166.	4.6	131
30	Modelling lidar-derived estimates of forest attributes over space and time: A review of approaches and future trends. Remote Sensing of Environment, 2021, 260, 112477.	4.6	123
31	Comparing ALS and Image-Based Point Cloud Metrics and Modelled Forest Inventory Attributes in a Complex Coastal Forest Environment. Forests, 2015, 6, 3704-3732.	0.9	121
32	Digital Aerial Photogrammetry for Updating Area-Based Forest Inventories: A Review of Opportunities, Challenges, and Future Directions. Current Forestry Reports, 2019, 5, 55-75.	3.4	109
33	Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sensing of Environment, 2022, 270, 112845.	4.6	108
34	Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada. Remote Sensing of Environment, 2016, 176, 188-201.	4.6	105
35	Detection of red attack stage mountain pine beetle infestation with high spatial resolution satellite imagery. Remote Sensing of Environment, 2005, 96, 340-351.	4.6	102
36	Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment, 2018, 216, 697-714.	4.6	99

#	Article	IF	CITATIONS
37	Validation of ICESat-2 terrain and canopy heights in boreal forests. Remote Sensing of Environment, 2020, 251, 112110.	4.6	99
38	Lidar plots — a new large-area data collection option: context, concepts, and case study. Canadian Journal of Remote Sensing, 2012, 38, 600-618.	1.1	98
39	Remote sensing of forest pest damage: a review and lessons learned from a Canadian perspective. Canadian Entomologist, 2016, 148, S296-S356.	0.4	95
40	Continuity of Landsat observations: Short term considerations. Remote Sensing of Environment, 2011, 115, 747-751.	4.6	93
41	Multi-temporal analysis of high spatial resolution imagery for disturbance monitoring. Remote Sensing of Environment, 2008, 112, 2729-2740.	4.6	92
42	Spatially Explicit Large Area Biomass Estimation: Three Approaches Using Forest Inventory and Remotely Sensed Imagery in a GIS. Sensors, 2008, 8, 529-560.	2.1	88
43	An accuracy assessment framework for largeâ€area land cover classification products derived from mediumâ€resolution satellite data. International Journal of Remote Sensing, 2006, 27, 663-683.	1.3	87
44	Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation. Remote Sensing of Environment, 2011, 115, 1665-1679.	4.6	87
45	Forest in situ observations using unmanned aerial vehicle as an alternative of terrestrial measurements. Forest Ecosystems, 2019, 6, .	1.3	86
46	Under-canopy UAV laser scanning for accurate forest field measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164, 41-60.	4.9	83
47	Estimating time since forest harvest using segmented Landsat ETM+ imagery. Remote Sensing of Environment, 2004, 93, 179-187.	4.6	82
48	Analyzing spatial and temporal variability in short-term rates of post-fire vegetation return from Landsat time series. Remote Sensing of Environment, 2018, 205, 32-45.	4.6	81
49	Assessing Precision in Conventional Field Measurements of Individual Tree Attributes. Forests, 2017, 8, 38.	0.9	80
50	Accurate derivation of stem curve and volume using backpack mobile laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161, 246-262.	4.9	77
51	Comparison of airborne laser scanning and digital stereo imagery for characterizing forest canopy gaps in coastal temperate rainforests. Remote Sensing of Environment, 2018, 208, 1-14.	4.6	75
52	Supporting large-area, sample-based forest inventories with very high spatial resolution satellite imagery. Progress in Physical Geography, 2009, 33, 403-423.	1.4	72
53	Detecting mountain pine beetle red attack damage with EOâ€1 Hyperion moisture indices. International Journal of Remote Sensing, 2007, 28, 2111-2121.	1.3	68
54	Validation of a large area land cover product using purpose-acquired airborne video. Remote Sensing of Environment, 2007, 106, 480-491.	4.6	68

#	Article	IF	CITATIONS
55	Prediction and assessment of bark beetle-induced mortality of lodgepole pine using estimates of stand vigor derived from remotely sensed data. Remote Sensing of Environment, 2009, 113, 1058-1066.	4.6	68
56	Comparison of airborne and satellite high spatial resolution data for the identification of individual trees with local maxima filtering. International Journal of Remote Sensing, 2004, 25, 2225-2232.	1.3	67
57	Integrating profiling LIDAR with Landsat data for regional boreal forest canopy attribute estimation and change characterization. Remote Sensing of Environment, 2007, 110, 123-137.	4.6	66
58	Large Area Mapping of Annual Land Cover Dynamics Using Multitemporal Change Detection and Classification of Landsat Time Series Data. Canadian Journal of Remote Sensing, 2015, 41, 293-314.	1.1	65
59	Towards automated segmentation of forest inventory polygons on high spatial resolution satellite imagery. Forestry Chronicle, 2008, 84, 221-230.	0.5	61
60	Land cover classification in an era of big and open data: Optimizing localized implementation and training data selection to improve mapping outcomes. Remote Sensing of Environment, 2022, 268, 112780.	4.6	61
61	Monitoring Canada's forests. Part 2: National forest fragmentation and pattern. Canadian Journal of Remote Sensing, 2008, 34, 563-584.	1.1	60
62	Confirmation of post-harvest spectral recovery from Landsat time series using measures of forest cover and height derived from airborne laser scanning data. Remote Sensing of Environment, 2018, 216, 262-275.	4.6	60
63	A thirty year, fine-scale, characterization of area burned in Canadian forests shows evidence of regionally increasing trends in the last decade. PLoS ONE, 2018, 13, e0197218.	1.1	58
64	Integrating remotely sensed and ancillary data sources to characterize a mountain pine beetle infestation. Remote Sensing of Environment, 2006, 105, 83-97.	4.6	57
65	Demonstrating the transferability of forest inventory attribute models derived using airborne laser scanning data. Remote Sensing of Environment, 2019, 227, 110-124.	4.6	56
66	A GIS-based risk rating of forest insect outbreaks using aerial overview surveys and the local Moran's I statistic. Applied Geography, 2013, 40, 161-170.	1.7	55
67	The changing culture of silviculture. Forestry, 2022, 95, 143-152.	1.2	54
68	National circumstances in the international circumboreal community. Forestry Chronicle, 2007, 83, 539-556.	0.5	53
69	Feasibility of Google Tango and Kinect for Crowdsourcing Forestry Information. Forests, 2018, 9, 6.	0.9	53
70	Historical forest biomass dynamics modelled with Landsat spectral trajectories. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93, 14-28.	4.9	52
71	An Efficient Protocol to Process Landsat Images for Change Detection With Tasselled Cap Transformation. IEEE Geoscience and Remote Sensing Letters, 2007, 4, 147-151.	1.4	47
72	Evaluation of Landsat-7 SLC-off image products for forest change detection. Canadian Journal of Remote Sensing, 2008, 34, 93-99.	1.1	47

#	Article	IF	CITATIONS
73	Modeling Stand Height, Volume, and Biomass from Very High Spatial Resolution Satellite Imagery and Samples of Airborne LiDAR. Remote Sensing, 2013, 5, 2308-2326.	1.8	47
74	Combining Multi-Date Airborne Laser Scanning and Digital Aerial Photogrammetric Data for Forest Growth and Yield Modelling. Remote Sensing, 2018, 10, 347.	1.8	44
75	Simulating the impacts of error in species and height upon tree volume derived from airborne laser scanning data. Forest Ecology and Management, 2014, 327, 167-177.	1.4	43
76	Impact of time on interpretations of forest fragmentation: Three-decades of fragmentation dynamics over Canada. Remote Sensing of Environment, 2019, 222, 65-77.	4.6	43
77	Change in forest condition: Characterizing non-stand replacing disturbances using time series satellite imagery. Forest Ecology and Management, 2020, 474, 118370.	1.4	43
78	A National Assessment of Wetland Status and Trends for Canada's Forested Ecosystems Using 33 Years of Earth Observation Satellite Data. Remote Sensing, 2018, 10, 1623.	1.8	42
79	Characterizing temperate forest structural and spectral diversity with Hyperion EO-1 data. Remote Sensing of Environment, 2010, 114, 1576-1589.	4.6	41
80	Challenges for the operational detection of mountain pine beetle green attack with remote sensing. Forestry Chronicle, 2009, 85, 32-38.	0.5	40
81	The Landsat observation record of Canada: 1972–2012. Canadian Journal of Remote Sensing, 2014, 39, 455-467.	1.1	40
82	Evaluating the impact of leaf-on and leaf-off airborne laser scanning data on the estimation of forest inventory attributes with the area-based approach. Canadian Journal of Forest Research, 2015, 45, 1498-1513.	0.8	40
83	Uncovering spatial and ecological variability in gap size frequency distributions in the Canadian boreal forest. Scientific Reports, 2020, 10, 6069.	1.6	38
84	A history of habitat dynamics: Characterizing 35 years of stand replacing disturbance. Canadian Journal of Remote Sensing, 2011, 37, 234-251.	1.1	37
85	Multi-sensor, multi-scale, Bayesian data synthesis for mapping within-year wildfire progression. Remote Sensing Letters, 2019, 10, 302-311.	0.6	37
86	Mapping, validating, and interpreting spatio-temporal trends in post-disturbance forest recovery. Remote Sensing of Environment, 2022, 271, 112904.	4.6	37
87	Segment-constrained regression tree estimation of forest stand height from very high spatial resolution panchromatic imagery over a boreal environment. Remote Sensing of Environment, 2010, 114, 2474-2484.	4.6	36
88	Monitoring clearcutting and subsequent rapid recovery in Mediterranean coppice forests with Landsat time series. Annals of Forest Science, 2020, 77, 1.	0.8	36
89	Cross-sensor change detection over a forested landscape: Options to enable continuity of medium spatial resolution measures. Remote Sensing of Environment, 2008, 112, 796-809.	4.6	35
90	Prevalence of multiple forest disturbances and impact on vegetation regrowth from interannual Landsat time series (1985–2015). Remote Sensing of Environment, 2019, 233, 111403.	4.6	35

#	Article	IF	CITATIONS
91	Effect of topographic correction on forest change detection using spectral trend analysis of Landsat pixel-based composites. International Journal of Applied Earth Observation and Geoinformation, 2016, 44, 186-194.	1.4	34
92	Multi-sensor change detection for within-year capture and labelling of forest disturbance. Remote Sensing of Environment, 2022, 268, 112741.	4.6	34
93	Risk rating for mountain pine beetle infestation of lodgepole pine forests over large areas with ordinal regression modelling. Forest Ecology and Management, 2008, 256, 900-912.	1.4	33
94	Updating stand-level forest inventories using airborne laser scanning and Landsat time series data. International Journal of Applied Earth Observation and Geoinformation, 2018, 66, 174-183.	1.4	33
95	Integration of Landsat time series and field plots for forest productivity estimates in decision support models. Forest Ecology and Management, 2016, 376, 284-297.	1.4	32
96	Updating Landsat time series of surface-reflectance composites and forest change products with new observations. International Journal of Applied Earth Observation and Geoinformation, 2017, 63, 104-111.	1.4	32
97	Use of vector polygons for the accuracy assessment of pixel-based land cover maps. Canadian Journal of Remote Sensing, 2006, 32, 268-279.	1.1	31
98	Generating intra-year metrics of wildfire progression using multiple open-access satellite data streams. Remote Sensing of Environment, 2019, 232, 111295.	4.6	31
99	Evidence of vegetation greening at alpine treeline ecotones: three decades of Landsat spectral trends informed by lidar-derived vertical structure. Environmental Research Letters, 2018, 13, 084022.	2.2	30
100	Characterizing streams and riparian areas with airborne laser scanning data. Remote Sensing of Environment, 2017, 192, 73-86.	4.6	29
101	Using local spatial autocorrelation to compare outputs from a forest growth model. Ecological Modelling, 2007, 209, 264-276.	1.2	28
102	Multiscale satellite and spatial information and analysis framework in support of a large-area forest monitoring and inventory update. Environmental Monitoring and Assessment, 2010, 170, 417-433.	1.3	28
103	Assessing variability in postâ€fire forest structure along gradients of productivity in the Canadian boreal using multiâ€source remote sensing. Journal of Biogeography, 2017, 44, 1294-1305.	1.4	28
104	Estimating Changes in Forest Attributes and Enhancing Growth Projections: a Review of Existing Approaches and Future Directions Using Airborne 3D Point Cloud Data. Current Forestry Reports, 2021, 7, 1-24.	3.4	28
105	Biomass status and dynamics over Canada's forests: Disentangling disturbed area from associated aboveground biomass consequences. Environmental Research Letters, 2020, 15, 094093.	2.2	28
106	Monitoring the impacts of mountain pine beetle mitigation. Forest Ecology and Management, 2009, 258, 1181-1187.	1.4	27
107	Enhancing Forest Growth and Yield Predictions with Airborne Laser Scanning Data: Increasing Spatial Detail and Optimizing Yield Curve Selection through Template Matching. Forests, 2016, 7, 255.	0.9	27
108	Comparing airborne and spaceborne photon-counting LiDAR canopy structural estimates across different boreal forest types. Remote Sensing of Environment, 2021, 262, 112510.	4.6	25

#	Article	IF	CITATIONS
109	Forest fragmentation, structure, and age characteristics as a legacy of forest management. Forest Ecology and Management, 2009, 258, 1938-1949.	1.4	24
110	Characterizing the forest fragmentation of Canada's national parks. Environmental Monitoring and Assessment, 2010, 164, 481-499.	1.3	24
111	Fragmentation regimes of Canada's forests. Canadian Geographer / Geographie Canadien, 2011, 55, 288-300.	1.0	24
112	Characterizing 25 years of change in the area, distribution, and carbon stock of Mediterranean pines in Central Spain. International Journal of Remote Sensing, 2012, 33, 5546-5573.	1.3	24
113	Mapping Dominant Tree Species over Large Forested Areas Using Landsat Best-Available-Pixel Image Composites. Canadian Journal of Remote Sensing, 2015, 41, 203-218.	1.1	24
114	Forest stand age classification using time series of photogrammetrically derived digital surface models. Scandinavian Journal of Forest Research, 2016, 31, 194-205.	0.5	24
115	Characterization of the diminishing accuracy in detecting forest insect damage over time. Canadian Journal of Remote Sensing, 2005, 31, 421-431.	1.1	23
116	Impact of sun-surface-sensor geometry upon multitemporal high spatial resolution satellite imagery. Canadian Journal of Remote Sensing, 2008, 34, 455-461.	1.1	23
117	Optimizing Landsat time series length for regional mapping of lidar-derived forest structure. Remote Sensing of Environment, 2020, 239, 111645.	4.6	23
118	Identifying leading species using tree crown metrics derived from very high spatial resolution imagery in a boreal forest environment. Canadian Journal of Remote Sensing, 2010, 36, 332-344.	1.1	22
119	Representative Landscapes in the Forested Area of Canada. Environmental Management, 2012, 49, 163-173.	1.2	22
120	Forest inventory stand height estimates from very high spatial resolution satellite imagery calibrated with lidar plots. International Journal of Remote Sensing, 2013, 34, 4406-4424.	1.3	22
121	Estimating Forest Site Productivity Using Airborne Laser Scanning Data and Landsat Time Series. Canadian Journal of Remote Sensing, 2015, 41, 232-245.	1.1	22
122	Augmenting Site Index Estimation with Airborne Laser Scanning Data. Forest Science, 2015, 61, 861-873.	0.5	22
123	Enriching ALS-Derived Area-Based Estimates of Volume through Tree-Level Downscaling. Forests, 2015, 6, 2608-2630.	0.9	22
124	Information Needs of Next-Generation Forest Carbon Models: Opportunities for Remote Sensing Science. Remote Sensing, 2019, 11, 463.	1.8	22
125	Sense of presence and sense of place in perceiving a 3D geovisualization for communication in urban planning $\hat{a} \in \hat{U}$ Differences introduced by prior familiarity with the place. Landscape and Urban Planning, 2021, 207, 103996.	3.4	22
126	Evaluating ICESat-2 for monitoring, modeling, and update of large area forest canopy height products. Remote Sensing of Environment, 2022, 271, 112919.	4.6	22

#	Article	IF	CITATIONS
127	Impact of Forest Fragmentation on Patterns of Mountain Pine Beetle-Caused Tree Mortality. Forests, 2013, 4, 279-295.	0.9	21
128	Barrenâ€ground caribou (<i>Rangifer tarandus groenlandicus</i>) behaviour after recent fire events; integrating caribou telemetry data with Landsat fire detection techniques. Global Change Biology, 2017, 23, 1036-1047.	4.2	21
129	Implications of differing input data sources and approaches upon forest carbon stock estimation. Environmental Monitoring and Assessment, 2010, 166, 543-561.	1.3	20
130	Developing 5â€ [−] m resolution canopy height and digital terrain models from WorldView and ArcticDEM data. Remote Sensing of Environment, 2018, 218, 174-188.	4.6	20
131	Enhancing the Estimation of Stem-Size Distributions for Unimodal and Bimodal Stands in a Boreal Mixedwood Forest with Airborne Laser Scanning Data. Forests, 2018, 9, 95.	0.9	20
132	Inclusion of topographic variables in an unsupervised classification of satellite imagery. Canadian Journal of Remote Sensing, 2004, 30, 137-149.	1.1	19
133	Lidar calibration and validation for geometric-optical modeling with Landsat imagery. Remote Sensing of Environment, 2012, 124, 384-393.	4.6	19
134	Classification of annual non-stand replacing boreal forest change in Canada using Landsat time series: a case study in northern Ontario. Remote Sensing Letters, 2017, 8, 29-37.	0.6	19
135	Differentiation of Alternate Harvesting Practices Using Annual Time Series of Landsat Data. Forests, 2017, 8, 15.	0.9	19
136	Assessing single photon LiDAR for operational implementation of an enhanced forest inventory in diverse mixedwood forests. Forestry Chronicle, 2021, 97, 78-96.	0.5	19
137	Improving carbon monitoring and reporting in forests using spatially-explicit information. Carbon Balance and Management, 2016, 11, 23.	1.4	18
138	The urban greenness score: A satellite-based metric for multi-decadal characterization of urban land dynamics. International Journal of Applied Earth Observation and Geoinformation, 2020, 93, 102210.	1.4	18
139	Evaluating the capacity of single photon lidar for terrain characterization under a range of forest conditions. Remote Sensing of Environment, 2021, 252, 112169.	4.6	18
140	Quantifying the contribution of spectral metrics derived from digital aerial photogrammetry to area-based models of forest inventory attributes. Remote Sensing of Environment, 2019, 234, 111434.	4.6	17
141	A Provincial and Regional Assessment of the Mountain Pine Beetle Epidemic in British Columbia: 1999-2008. Journal of Environmental Informatics, 2010, 15, 1-13.	6.0	17
142	Sensitivity of hyperclustering and labelling land cover classes to Landsat image acquisition date. International Journal of Remote Sensing, 2004, 25, 5337-5344.	1.3	16
143	Investigating the effectiveness of Mountain Pine Beetle mitigation strategies. International Journal of Pest Management, 2008, 54, 151-165.	0.9	16
144	Digital high spatial resolution aerial imagery to support forest health monitoring: the mountain pine beetle context. Journal of Applied Remote Sensing, 2012, 6, 062527.	0.6	16

#	Article	IF	CITATIONS
145	Challenges of Multi-Temporal and Multi-Sensor Forest Growth Analyses in a Highly Disturbed Boreal Mixedwood Forests. Remote Sensing, 2019, 11, 2102.	1.8	16
146	Spatially-Explicit Prediction of Wildfire Burn Probability Using Remotely-Sensed and Ancillary Data. Canadian Journal of Remote Sensing, 2020, 46, 313-329.	1.1	16
147	Determination of the compositional change (1999–2006) in the pine forests of British Columbia due to mountain pine beetle infestation. Environmental Monitoring and Assessment, 2009, 158, 593-608.	1.3	15
148	Extending Airborne Lidar-Derived Estimates of Forest Canopy Cover and Height Over Large Areas Using kNN With Landsat Time Series Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 3489-3496.	2.3	15
149	Depth camera indoor mapping for 3D virtual radio play. Photogrammetric Record, 2018, 33, 171-195.	0.4	15
150	Aboveground forest biomass derived using multiple dates of WorldView-2 stereo-imagery: quantifying the improvement in estimation accuracy. International Journal of Remote Sensing, 2018, 39, 8766-8783.	1.3	15
151	Assessing spectral measures of post-harvest forest recovery with field plot data. International Journal of Applied Earth Observation and Geoinformation, 2019, 80, 102-114.	1.4	15
152	Discriminating treed and non-treed wetlands in boreal ecosystems using time series Sentinel-1 data. International Journal of Applied Earth Observation and Geoinformation, 2020, 85, 102007.	1.4	15
153	Satellite-based time series land cover and change information to map forest area consistent with national and international reporting requirements. Forestry, 2020, 93, 331-343.	1.2	15
154	Mapping dynamic peri-urban land use transitions across Canada using Landsat time series: Spatial and temporal trends and associations with socio-demographic factors. Computers, Environment and Urban Systems, 2021, 88, 101653.	3.3	15
155	Augmenting Landsat time series with Harmonized Landsat Sentinel-2 data products: Assessment of spectral correspondence. Science of Remote Sensing, 2021, 4, 100031.	2.2	15
156	Changing northern vegetation conditions are influencing barren ground caribou (<i>Rangifer) Tj ETQq0 0 0 rgBT</i>	Overlock	19Jf 50 302
157	Satellite time series can guide forest restoration. Nature, 2019, 569, 630-630.	13.7	14
158	The Petawawa Research Forest: Establishment of a remote sensing supersite. Forestry Chronicle, 2019, 95, 149-156.	0.5	14
159	Mapping mountain pine beetle infestation with high spatial resolution satellite imagery. Forestry Chronicle, 2004, 80, 743-745.	0.5	13
160	Map comparison using spatial autocorrelation: an example using AVHRR derived land cover of Canada. Canadian Journal of Remote Sensing, 2004, 30, 573-592.	1.1	13
161	An approach using Dempster–Shafer theory to fuse spatial data and satellite image derived crown metrics for estimation of forest stand leading species. Information Fusion, 2013, 14, 384-395.	11.7	13
162	Grizzly bear selection of recently harvested forests is dependent on forest recovery rate and landscape composition. Forest Ecology and Management, 2019, 449, 117459.	1.4	13

#	Article	IF	CITATIONS
163	Land cover harmonization using Latent Dirichlet Allocation. International Journal of Geographical Information Science, 2021, 35, 348-374.	2.2	13
164	Using multi-source data to map and model the predisposition of forests to wind disturbance. Scandinavian Journal of Forest Research, 2016, 31, 66-79.	0.5	12
165	Estimating changes in lichen mat volume through time and related effects on barren ground caribou (Rangifer tarandus groenlandicus) movement. PLoS ONE, 2017, 12, e0172669.	1.1	12
166	Forest Connectivity Regions of Canada Using Circuit Theory and Image Analysis. PLoS ONE, 2017, 12, e0169428.	1.1	11
167	The Combined Use of SLAM Laser Scanning and TLS for the 3D Indoor Mapping. Buildings, 2021, 11, 386.	1.4	11
168	Integrated Object-Based Spatiotemporal Characterization of Forest Change from an Annual Time Series of Landsat Image Composites. Canadian Journal of Remote Sensing, 2015, 41, 271-292.	1.1	10
169	Characterizing spatial-temporal patterns of landscape disturbance and recovery in western Alberta, Canada using a functional data analysis approach and remotely sensed data. Ecological Informatics, 2017, 39, 140-150.	2.3	10
170	Update and spatial extension of strategic forest inventories using time series remote sensing and modeling. International Journal of Applied Earth Observation and Geoinformation, 2020, 84, 101956.	1.4	10
171	Landsat archive holdings for Finland: opportunities for forest monitoring. Silva Fennica, 2018, 52, .	0.5	10
172	An open science and open data approach for the statistically robust estimation of forest disturbance areas. International Journal of Applied Earth Observation and Geoinformation, 2022, 106, 102663.	1.4	9
173	Quantifying the precision of forest stand height and canopy cover estimates derived from air photo interpretation. Forestry, 2021, 94, 611-629.	1.2	8
174	Uncovering regional variability in disturbance trends between parks and greater park ecosystems across Canada (1985–2015). Scientific Reports, 2019, 9, 1323.	1.6	7
175	Benchmarking acquisition parameters for digital aerial photogrammetric data for forest inventory applications: Impacts of image overlap and resolution. Remote Sensing of Environment, 2021, 265, 112677.	4.6	7
176	An approach for edge matching large-area satellite image classifications. Canadian Journal of Remote Sensing, 2007, 33, 266-277.	1.1	6
177	Context and Opportunities for Expanding Protected Areas in Canada. Land, 2018, 7, 137.	1.2	6
178	Structural development following stand-replacing disturbance in a boreal mixedwood forest. Forest Ecology and Management, 2019, 453, 117586.	1.4	6
179	Forest Road Status Assessment Using Airborne Laser Scanning. Forest Science, 2020, 66, 501-508.	0.5	6
180	Effect of scan angle on ALS metrics and area-based predictions of forest attributes for balsam fir dominated stands. Forestry, 2022, 95, 49-72.	1.2	6

#	Article	IF	CITATIONS
181	Characterizing stream morphological features important for fish habitat using airborne laser scanning data. Remote Sensing of Environment, 2022, 272, 112948.	4.6	6
182	Linking survey detection accuracy with ability to mitigate populations of mountain pine beetle. Forestry Chronicle, 2008, 84, 900-909.	0.5	5
183	Developing a forest inventory approach using airborne single photon lidar data: from ground plot selection to forest attribute prediction. Forestry, 2022, 95, 347-362.	1.2	5
184	Remote Sensing for Studies of Vegetation Condition: Theory and Application. , 0, , 356-367.		5
185	Extending Estimates of Tree and Tree Species Presence-Absence through Space and Time Using Landsat Composites. Canadian Journal of Remote Sensing, 2020, 46, 567-584.	1.1	4
186	Using GEDI Waveforms for Improved TanDEM-X Forest Height Mapping: A Combined SINC + Legendre Approach. Remote Sensing, 2021, 13, 2882.	1.8	4
187	Advancing the application of remote sensing for forest information needs in Canada: Lessons learned from a national collaboration of university, industrial and government stakeholders. Forestry Chronicle, 2021, 97, 109-126.	0.5	2
188	Single photon lidar signal attenuation under boreal forest conditions. Remote Sensing Letters, 2021, 12, 1049-1060.	0.6	2
189	Calculating the Risk of Mountain Pine Beetle Attack: a Comparison of Distance- and Density-Based Estimates of Beetle Pressure. Journal of Environmental Informatics, 2006, 8, 58-69.	6.0	2
190	MAPPING THE RISK OF FOREST WIND DAMAGE USING AIRBORNE SCANNING LiDAR. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-3/W2, 189-196.	0.2	2
191	3D Point Cloud Data in Conveying Information for Local Green Factor Assessment. ISPRS International Journal of Geo-Information, 2021, 10, 762.	1.4	2
192	A space-time data cube: Multi-temporal forest structure maps from landsat and lidar. , 2017, , .		1
193	Introduction to Special Issue on Remote Sensing for Advanced Forest Inventory. Canadian Journal of Remote Sensing, 2016, 42, 397-399.	1.1	0
194	Changing Trends of Biomass and Carbon Pools in Mediterranean Pine Forests. Managing Forest Ecosystems, 2017, , 119-149.	0.4	0
195	Reply to Vauhkonen: Comment on Tompalski et al. Combining Multi-Date Airborne Laser Scanning and Digital Aerial Photogrammetric Data for Forest Growth and Yield Modelling. Remote Sens. 2018, 10, 347. Remote Sensing, 2018, 10, 1432.	1.8	0
196	Progrès dans l'application de la télédétection pour les besoins en matière d'information sur les fo au Canada : leçons tirées d'une collaboration nationale d'intervenants universitaires, industriels et gouvernementaux. Forestry Chronicle, 2021, 97, 127-147.	orêts 0.5	0