Fabiola Navarro-Pardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9418461/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of surface engineering of hybrid structure for high performance quantum dots based photoelectrochemical hydrogen generation. Chemical Engineering Journal, 2022, 429, 132425.	6.6	14
2	Hybrid surface passivation of PbS/CdS quantum dots for efficient photoelectrochemical hydrogen generation. Applied Surface Science, 2020, 530, 147252.	3.1	20
3	Synergistic Effect of Plasmonic Gold Nanoparticles Decorated Carbon Nanotubes in Quantum Dots/TiO ₂ for Optoelectronic Devices. Advanced Science, 2020, 7, 2001864.	5.6	39
4	Two-dimensional functionalized hexagonal boron nitride for quantum dot photoelectrochemical hydrogen generation. Journal of Materials Chemistry A, 2020, 8, 20698-20713.	5.2	16
5	1D/2D Cobaltâ€Based Nanohybrids as Electrocatalysts for Hydrogen Generation. Advanced Functional Materials, 2020, 30, 1908467.	7.8	25
6	Highly efficient and stable spray assisted nanostructured Cu2S/Carbon paper counter electrode for quantum dots sensitized solar cells. Journal of Power Sources, 2019, 436, 226849.	4.0	36
7	A colloidal heterostructured quantum dot sensitized carbon nanotube–TiO ₂ hybrid photoanode for high efficiency hydrogen generation. Nanoscale Horizons, 2019, 4, 404-414.	4.1	33
8	Stearic acid as interface modifier and lubricant agent of the system: Polypropylene/calcium carbonate nanoparticles. Polymer Engineering and Science, 2019, 59, E279.	1.5	18
9	Efficient solar-driven hydrogen generation using colloidal heterostructured quantum dots. Journal of Materials Chemistry A, 2019, 7, 14079-14088.	5.2	46
10	Graphene oxide/cobalt-based nanohybrid electrodes for robust hydrogen generation. Applied Catalysis B: Environmental, 2019, 245, 167-176.	10.8	21
11	CuS/Graphene Nanocomposite as a Transparent Conducting Oxide and Pt-Free Counter Electrode for Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2019, 166, H3065-H3073.	1.3	22
12	Structure/Property Relations in "Giant―Semiconductor Nanocrystals: Opportunities in Photonics and Electronics. Accounts of Chemical Research, 2018, 51, 609-618.	7.6	51
13	Nearâ€Infrared, Heavy Metalâ€Free Colloidal "Giant―Core/Shell Quantum Dots. Advanced Energy Materials, 2018, 8, 1701432.	10.2	90
14	Optoelectronic Properties in Nearâ€Infrared Colloidal Heterostructured Pyramidal "Giant―Core/Shell Quantum Dots. Advanced Science, 2018, 5, 1800656.	5.6	63
15	Highly stable photoelectrochemical cells for hydrogen production using a SnO ₂ –TiO ₂ /quantum dot heterostructured photoanode. Nanoscale, 2018, 10, 15273-15284.	2.8	38
16	Improvement of toughness properties of polypropylene filled with nanobentonite using stearic acid as interface modifier. Journal of Composite Materials, 2017, 51, 373-380.	1.2	14
17	Nanofiber-Structured TiO2Nanocrystals as a Scattering Layer in Dye-Sensitized Solar Cells. ECS Journal of Solid State Science and Technology, 2017, 6, N32-N37.	0.9	10
18	Controlled synthesis of near-infrared quantum dots for optoelectronic devices. Nanoscale, 2017, 9, 16843-16851.	2.8	17

#	Article	IF	CITATIONS
19	Highly Stable Colloidal "Giant―Quantum Dots Sensitized Solar Cells. Advanced Functional Materials, 2017, 27, 1701468.	7.8	92
20	Nanofiber-supported CuS nanoplatelets as high efficiency counter electrodes for quantum dot-based photoelectrochemical hydrogen production. Materials Chemistry Frontiers, 2017, 1, 65-72.	3.2	22
21	Carbon Nanotube and Graphene Based Polyamide Electrospun Nanocomposites: A Review. Journal of Nanomaterials, 2016, 2016, 1-16.	1.5	34
22	High efficiency, Pt-free photoelectrochemical cells for solar hydrogen generation based on "giant― quantum dots. Nano Energy, 2016, 27, 265-274.	8.2	103
23	Mechanical and rheological properties of polypropylene/bentonite composites with stearic acid as an interface modifier. Journal of Applied Polymer Science, 2015, 132, .	1.3	9
24	Carbon Fiber Composites of Pure Polypropylene and Maleated Polypropylene Blends Obtained from Injection and Compression Moulding. International Journal of Polymer Science, 2015, 2015, 1-8.	1.2	14
25	Influence of 1D and 2D Carbon Fillers and Their Functionalisation on Crystallisation and Thermomechanical Properties of Injection Moulded Nylon 6,6 Nanocomposites. Journal of Nanomaterials, 2014, 2014, 1-13.	1.5	4
26	Shear effect in betaâ€phase induction of polypropylene in a single screw extruder. Journal of Applied Polymer Science, 2013, 130, 2932-2937.	1.3	4
27	Effects on the Thermo-Mechanical and Crystallinity Properties of Nylon 6,6 Electrospun Fibres Reinforced with One Dimensional (1D) and Two Dimensional (2D) Carbon. Materials, 2013, 6, 3494-3513.	1.3	124
28	Statistical Study of Process Parameters Effects on Crystallinity of Electrospun Polyamide 6,6 Fibres. , 0, , .		0