Xiao Cheng Zeng

List of Publications by Citations

Source: https://exaly.com/author-pdf/9418396/xiao-cheng-zeng-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

620 papers

36,187 citations

94 h-index 159 g-index

645 ext. papers

40,985 ext. citations

9.1 avg, IF

7.91 L-index

#	Paper	IF	Citations
620	Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. <i>Nature Energy</i> , 2017 , 2,	62.3	1241
619	Formation of ordered ice nanotubes inside carbon nanotubes. <i>Nature</i> , 2001 , 412, 802-5	50.4	915
618	A universal principle for a rational design of single-atom electrocatalysts. <i>Nature Catalysis</i> , 2018 , 1, 339	-3 ,4 85	739
617	Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 1289-93	6.4	659
616	Two-dimensional boron monolayer sheets. ACS Nano, 2012, 6, 7443-53	16.7	548
615	High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. <i>Advanced Materials</i> , 2015 , 27, 1912-8	24	491
614	Phosphorene Nanoribbons, Phosphorus Nanotubes, and van der Waals Multilayers. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 14051-14059	3.8	467
613	EConjugated Lewis Base: Efficient Trap-Passivation and Charge-Extraction for Hybrid Perovskite Solar Cells. <i>Advanced Materials</i> , 2017 , 29, 1604545	24	431
612	Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 961-4	11.5	428
611	A droplet-based electricity generator with high instantaneous power density. <i>Nature</i> , 2020 , 578, 392-39)6 0.4	391
610	Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells. <i>Journal of the American Chemical Society</i> , 2019 , 141, 5781-5787	16.4	368
609	Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 13035-40	3.6	358
608	Intrinsic Ferroelasticity and/or Multiferroicity in Two-Dimensional Phosphorene and Phosphorene Analogues. <i>Nano Letters</i> , 2016 , 16, 3236-41	11.5	350
607	Evidence of hollow golden cages. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 8326-30	11.5	345
606	Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 8435-40	11.5	341
605	Simultaneously Dual Modification of Ni-Rich Layered Oxide Cathode for High-Energy Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2019 , 29, 1808825	15.6	287
604	First-order transition in confined water between high-density liquid and low-density amorphous phases. <i>Nature</i> , 2000 , 408, 564-7	50.4	286

(2015-2019)

603	Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. <i>Nature Communications</i> , 2019 , 10, 16	17.4	283	
602	MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field. <i>Nanoscale</i> , 2014 , 6, 2879-86	7.7	275	
601	Structural prediction of thiolate-protected Au38: a face-fused bi-icosahedral Au core. <i>Journal of the American Chemical Society</i> , 2008 , 130, 7830-2	16.4	261	
600	Cesium Titanium(IV) Bromide Thin Films Based Stable Lead-free Perovskite Solar Cells. <i>Joule</i> , 2018 , 2, 558-570	27.8	260	
599	Metallic Nickel Hydroxide Nanosheets Give Superior Electrocatalytic Oxidation of Urea for Fuel Cells. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12465-9	16.4	253	
598	Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting. <i>Nano Letters</i> , 2017 , 17, 5133-5139	11.5	253	
597	Nine new phosphorene polymorphs with non-honeycomb structures: a much extended family. <i>Nano Letters</i> , 2015 , 15, 3557-62	11.5	247	
596	Adsorption of O2, H2, CO, NH3, and NO2 on ZnO Nanotube: A Density Functional Theory Study. Journal of Physical Chemistry C, 2008 , 112, 5747-5755	3.8	2 40	
595	Free-Standing Two-Dimensional Ru Nanosheets with High Activity toward Water Splitting. <i>ACS Catalysis</i> , 2016 , 6, 1487-1492	13.1	217	
594	Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. <i>Nanoscale</i> , 2014 , 6, 8359-67	7.7	216	
593	Investigating the structural evolution of thiolate protected gold clusters from first-principles. <i>Nanoscale</i> , 2012 , 4, 4054-72	7.7	205	
592	Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets. <i>ACS Nano</i> , 2012 , 6, 2401-9	16.7	193	
591	Earth-Abundant Nontoxic Titanium(IV)-based Vacancy-Ordered Double Perovskite Halides with Tunable 1.0 to 1.8 eV Bandgaps for Photovoltaic Applications. <i>ACS Energy Letters</i> , 2018 , 3, 297-304	20.1	192	
590	Freezing of Confined Water: A Bilayer Ice Phase in Hydrophobic Nanopores. <i>Physical Review Letters</i> , 1997 , 79, 5262-5265	7.4	192	
589	On the phase diagram of water with density functional theory potentials: The melting temperature of ice I(h) with the Perdew-Burke-Ernzerhof and Becke-Lee-Yang-Parr functionals. <i>Journal of Chemical Physics</i> , 2009 , 130, 221102	3.9	190	
588	Markedly Enhanced Oxygen Reduction Activity of Single-Atom Fe Catalysts via Integration with Fe Nanoclusters. <i>ACS Nano</i> , 2019 , 13, 11853-11862	16.7	189	
587	Titanium trisulfide monolayer: theoretical prediction of a new direct-gap semiconductor with high and anisotropic carrier mobility. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 7572-6	16.4	189	
586	Exploration of High-Performance Single-Atom Catalysts on Support M1/FeOx for CO Oxidation via Computational Study. <i>ACS Catalysis</i> , 2015 , 5, 544-552	13.1	179	

585	A theoretical study of single-atom catalysis of CO oxidation using Au embedded 2D h-BN monolayer: a CO-promoted Olactivation. <i>Scientific Reports</i> , 2014 , 4, 5441	4.9	177
584	Tuning Electronic and Magnetic Properties of Early Transition-Metal Dichalcogenides via Tensile Strain. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 7242-7249	3.8	171
583	Suppressed Ion Migration along the In-Plane Direction in Layered Perovskites. <i>ACS Energy Letters</i> , 2018 , 3, 684-688	20.1	166
582	Mechanistic Origin of the High Performance of Yolk@Shell BiS@N-Doped Carbon Nanowire Electrodes. <i>ACS Nano</i> , 2018 , 12, 12597-12611	16.7	166
581	Catalytic activities of subnanometer gold clusters (AuEAu[IAu[Iand AuEAu]Ifor CO oxidation. <i>ACS Nano</i> , 2011 , 5, 7818-29	16.7	163
580	Heterojunction-Depleted Lead-Free Perovskite Solar Cells with Coarse-Grained B-ECsSnI3 Thin Films. <i>Advanced Energy Materials</i> , 2016 , 6, 1601130	21.8	162
579	CO self-promoting oxidation on nanosized gold clusters: triangular Au3 active site and CO induced O-O scission. <i>Journal of the American Chemical Society</i> , 2013 , 135, 2583-95	16.4	162
578	Thiolate-protected Au20(SR)16 cluster: prolate Au8 core with new [Au3(SR)4] staple motif. <i>Journal of the American Chemical Society</i> , 2009 , 131, 13619-21	16.4	154
577	Mechanistic Study of the Persistent Luminescence of CaAl2O4:Eu,Nd. <i>Chemistry of Materials</i> , 2015 , 27, 2195-2202	9.6	153
576	A New Class of Folding Oligomers: Crescent Oligoamides. <i>Journal of the American Chemical Society</i> , 2000 , 122, 4219-4220	16.4	153
575	Chemical functionalization of boron-nitride nanotubes with NH3 and amino functional groups. Journal of the American Chemical Society, 2006 , 128, 12001-6	16.4	152
574	. Journal of Physical Chemistry C, 2012 , 116, 11336-11342	3.8	150
573	Multiwalled ice helixes and ice nanotubes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 19664-7	11.5	150
572	Structures and stabilities of small silicon clusters: Ab initio molecular-orbital calculations of Si7Bi11. <i>Journal of Chemical Physics</i> , 2003 , 118, 3558-3570	3.9	149
571	Lead-Free Mixed Tin and Germanium Perovskites for Photovoltaic Application. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8038-8043	16.4	148
570	Bismuth Oxychalcogenides: A New Class of Ferroelectric/Ferroelastic Materials with Ultra High Mobility. <i>Nano Letters</i> , 2017 , 17, 6309-6314	11.5	139
569	Self-assembling subnanometer pores with unusual mass-transport properties. <i>Nature Communications</i> , 2012 , 3, 949	17.4	139
568	High-Level Ab Initio Electronic Structure Calculations of Water Clusters (H2O)16 and (H2O)17: A New Global Minimum for (H2O)16. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 3122-3127	6.4	139

(2012-2012)

567	Long-range ordered carbon clusters: a crystalline material with amorphous building blocks. <i>Science</i> , 2012 , 337, 825-8	33.3	137	
566	Detection of novel gaseous states at the highly oriented pyrolytic graphite-water interface. <i>Langmuir</i> , 2007 , 23, 1778-83	4	137	
565	Intrinsic electronic and transport properties of graphyne sheets and nanoribbons. <i>Nanoscale</i> , 2013 , 5, 9264-76	7.7	134	
564	B2C graphene, nanotubes, and nanoribbons. <i>Nano Letters</i> , 2009 , 9, 1577-82	11.5	133	
563	A Near-Infrared-Emissive Alkynyl-Protected Au24 Nanocluster. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9683-6	16.4	130	
562	Creating nanocavities of tunable sizes: hollow helices. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 11583-8	11.5	130	
561	Unraveling the mechanisms of O2 activation by size-selected gold clusters: transition from superoxo to peroxo chemisorption. <i>Journal of the American Chemical Society</i> , 2012 , 134, 9438-45	16.4	129	
560	CO2 Capture on h-BN Sheet with High Selectivity Controlled by External Electric Field. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 6912-6917	3.8	127	
559	Toward Eco-friendly and Stable Perovskite Materials for Photovoltaics. <i>Joule</i> , 2018 , 2, 1231-1241	27.8	126	
558	Gold-caged metal clusters with large HOMO-LUMO gap and high electron affinity. <i>Journal of the American Chemical Society</i> , 2005 , 127, 15680-1	16.4	125	
557	Endohedral silicon fullerenes sinN (27 Journal of the American Chemical Society, 2004 , 126, 13845-9	16.4	125	
556	Continuous Grain-Boundary Functionalization for High-Efficiency Perovskite Solar Cells with Exceptional Stability. <i>CheM</i> , 2018 , 4, 1404-1415	16.2	124	
555	Structures and relative stability of neutral gold clusters: Aun (n=15-19). <i>Journal of Chemical Physics</i> , 2006 , 125, 154303	3.9	123	
554	Measurement of contact-angle hysteresis for droplets on nanopillared surface and in the Cassie and Wenzel states: a molecular dynamics simulation study. <i>ACS Nano</i> , 2011 , 5, 6834-42	16.7	121	
553	Planar pentacoordinate carbon in CAl5(+): a global minimum. <i>Journal of the American Chemical Society</i> , 2008 , 130, 10394-400	16.4	120	
552	Controlling Catalytic Properties of Pd Nanoclusters through Their Chemical Environment at the Atomic Level Using Isoreticular Metal@rganic Frameworks. <i>ACS Catalysis</i> , 2016 , 6, 3461-3468	13.1	120	
551	Type-I van der Waals heterostructure formed by MoS and ReS monolayers. <i>Nanoscale Horizons</i> , 2017 , 2, 31-36	10.8	118	
550	Interlocked catenane-like structure predicted in Au24(SR)20: implication to structural evolution of thiolated gold clusters from homoleptic gold(I) thiolates to core-stacked nanoparticles. <i>Journal of the American Chemical Society</i> 2012 134 3015-24	16.4	117	

549	Metallic single-walled silicon nanotubes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 2664-8	11.5	116
548	Structures and stability of medium silicon clusters. II. Ab initio molecular orbital calculations of Si12-Si20. <i>Journal of Chemical Physics</i> , 2004 , 120, 8985-95	3.9	116
547	Validity of Tolman equation: How large should a droplet be?. <i>Journal of Chemical Physics</i> , 1998 , 109, 4063-4070	3.9	115
546	CO oxidation on TiO(2) (110) supported subnanometer gold clusters: size and shape effects. <i>Journal of the American Chemical Society</i> , 2013 , 135, 19336-46	16.4	113
545	Probing the structural evolution of medium-sized gold clusters: Au(n)(-) (n = 27-35). <i>Journal of the American Chemical Society</i> , 2010 , 132, 6596-605	16.4	111
544	Efficient kinetic macrocyclization. <i>Journal of the American Chemical Society</i> , 2009 , 131, 2629-37	16.4	111
543	CO oxidation catalyzed by single-walled helical gold nanotube. <i>Nano Letters</i> , 2008 , 8, 195-202	11.5	110
542	Tunable Optical Properties and Charge Separation in CH3NH3Sn(x)Pb(1-x)I3/TiO2-Based Planar Perovskites Cells. <i>Journal of the American Chemical Society</i> , 2015 , 137, 8227-36	16.4	109
541	Band-gap engineering via tailored line defects in boron-nitride nanoribbons, sheets, and nanotubes. <i>ACS Nano</i> , 2012 , 6, 4104-12	16.7	108
540	Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene. <i>Nanoscale</i> , 2015 , 7, 18716-24	7.7	107
539	Icosahedral crown gold nanocluster au(43)cu(12) with high catalytic activity. Nano Letters, 2010, 10, 10	55-63	107
538	Motif transition in growth patterns of small to medium-sized silicon clusters. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 1491-4	16.4	107
537	Doping golden buckyballs:Cu@Au16- and Cu@Au17- cluster anions. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 2915-8	16.4	106
536	A grand unified model for liganded gold clusters. <i>Nature Communications</i> , 2016 , 7, 13574	17.4	106
535	Adsorption and Surface Reactivity on Single-Walled Boron Nitride Nanotubes Containing Stone Wales Defects. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 14105-14112	3.8	104
534	Polymorphism and polyamorphism in bilayer water confined to slit nanopore under high pressure. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 21240-5	11.5	103
533	Hydrogen Storage in Pillared Li-Dispersed Boron Carbide Nanotubes. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 8458-8463	3.8	102
532	Structural transition of gold nanoclusters: from the golden cage to the golden pyramid. <i>ACS Nano</i> , 2009 , 3, 1225-30	16.7	99

531	Periodic graphene nanobuds. <i>Nano Letters</i> , 2009 , 9, 250-6	11.5	98	
530	Au34-: A Fluxional CoreBhell Cluster. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 8228-8232	3.8	98	
529	Exploration of Half Metallicity in Edge-Modified Graphene Nanoribbons. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 3937-3944	3.8	97	
528	Quantized water transport: ideal desalination through graphyne-4 membrane. <i>Scientific Reports</i> , 2013 , 3, 3163	4.9	95	
527	Half-Metallicity in Hybrid Graphene/Boron Nitride Nanoribbons with Dihydrogenated Edges. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 9442-9450	3.8	94	
526	Self-Assembly and Properties of Nonmetalated Tetraphenyl-Porphyrin on Metal Substrates. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 9408-9415	3.8	94	
525	Materials design of half-metallic graphene and graphene nanoribbons. <i>Applied Physics Letters</i> , 2009 , 94, 223111	3.4	93	
524	Au42: an alternative icosahedral golden fullerene cage. <i>Journal of the American Chemical Society</i> , 2005 , 127, 3698-9	16.4	93	
523	Stable three-center hydrogen bonding in a partially rigidified structure. <i>Chemistry - A European Journal</i> , 2001 , 7, 4352-7	4.8	93	
522	van der Waals trilayers and superlattices: modification of electronic structures of MoS2 by intercalation. <i>Nanoscale</i> , 2014 , 6, 4566-71	7.7	92	
521	Transition from one-dimensional water to ferroelectric ice within a supramolecular architecture. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 3481-6	11.5	89	
520	Probing the planar tetra-, penta-, and hexacoordinate carbon in carbon-boron mixed clusters. Journal of the American Chemical Society, 2008, 130, 2580-92	16.4	88	
519	Nanoscale hydrophobic interaction and nanobubble nucleation. <i>Physical Review Letters</i> , 2004 , 93, 1857	0 † .4	88	
518	Transition-Metal Dihydride Monolayers: A New Family of Two-Dimensional Ferromagnetic Materials with Intrinsic Room-Temperature Half-Metallicity. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 4260-4	26 6	87	
517	Structural evolution of doped gold clusters: $MAu(x)(-)$ (M = Si, Ge, Sn; x = 5-8). <i>Journal of the American Chemical Society</i> , 2009 , 131, 3396-404	16.4	87	
516	Doping the golden cage Au16(-) with Si, Ge, and Sn. <i>Journal of the American Chemical Society</i> , 2007 , 129, 15136-7	16.4	87	
515	The Tolman length: is it positive or negative?. Journal of the American Chemical Society, 2005, 127, 1534	16£8.4	86	
514	Relative stability of planar versus double-ring tubular isomers of neutral and anionic boron cluster B20 and B20 <i>Journal of Chemical Physics</i> , 2006 , 124, 154310	3.9	86	

513	The melting temperature of proton-disordered hexagonal ice: A computer simulation of 4-site transferable intermolecular potential model of water. <i>Journal of Chemical Physics</i> , 2000 , 112, 8534-8538	3.9	86
512	Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates. <i>Accounts of Chemical Research</i> , 2014 , 47, 2505-13	24.3	85
511	Structural Transitions from Pyramidal to Fused Planar to Tubular to Core/Shell Compact in Gold Clusters: Aun- (n = 2105). <i>Journal of Physical Chemistry C</i> , 2007 , 111, 4190-4198	3.8	85
510	New Mechanistic Pathways for Criegee-Water Chemistry at the Air/Water Interface. <i>Journal of the American Chemical Society</i> , 2016 , 138, 11164-9	16.4	85
509	Perovskite Chalcogenides with Optimal Bandgap and Desired Optical Absorption for Photovoltaic Devices. <i>Advanced Energy Materials</i> , 2017 , 7, 1700216	21.8	84
508	Strong aggregation and directional assembly of aromatic oligoamide macrocycles. <i>Journal of the American Chemical Society</i> , 2011 , 133, 18590-3	16.4	84
507	Self-assembly of surfactants and polymorphic transition in nanotubes. <i>Journal of the American Chemical Society</i> , 2008 , 130, 7916-20	16.4	84
506	Ferroelectricity in Covalently functionalized Two-dimensional Materials: Integration of High-mobility Semiconductors and Nonvolatile Memory. <i>Nano Letters</i> , 2016 , 16, 7309-7315	11.5	83
505	First-principles study of methane dehydrogenation on a bimetallic Cu/Ni(111) surface. <i>Journal of Chemical Physics</i> , 2009 , 131, 174702	3.9	83
504	Metal-organic Kagome lattices M3(2,3,6,7,10,11-hexaiminotriphenylene)2 (M = Ni and Cu): from semiconducting to metallic by metal substitution. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 5954-8	3.6	82
503	Icosahedral B12-containing core-shell structures of B80. Chemical Communications, 2010, 46, 3878-80	5.8	82
502	Magnetic doping of the golden cage cluster M@Au16[[M=Fe,Co,Ni). <i>Physical Review B</i> , 2009 , 79,	3.3	82
501	Guest-free monolayer clathrate and its coexistence with two-dimensional high-density ice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5718-22	11.5	81
500	A global search of highly stable gold-covered bimetallic clusters M@Au(n) (n=8-17): endohedral gold clusters. <i>ChemPhysChem</i> , 2006 , 7, 2275-8	3.2	80
499	Distinct ice patterns on solid surfaces with various wettabilities. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 11285-11290	11.5	79
498	Ferroelectric hexagonal and rhombic monolayer ice phases. <i>Chemical Science</i> , 2014 , 5, 1757-1764	9.4	79
497	How does water freeze inside carbon nanotubes?. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2002 , 314, 462-469	3.3	79
496	Isomer identification and resolution in small gold clusters. <i>Journal of Chemical Physics</i> , 2010 , 132, 05430)5 .9	78

495	Ice nanotube: What does the unit cell look like?. Journal of Chemical Physics, 2000, 113, 5037	3.9	78
494	Oxidation of a two-dimensional hexagonal boron nitride monolayer: a first-principles study. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 5545-50	3.6	77
493	Hydroxyl-decorated graphene systems as candidates for organic metal-free ferroelectrics, multiferroics, and high-performance proton battery cathode materials. <i>Physical Review B</i> , 2013 , 87,	3.3	77
492	Lowest-energy structures of water clusters (H2O)11 and (H2O)13. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 11781-4	2.8	77
491	Magic-number gold nanoclusters with diameters from 1 to 3.5 nm: relative stability and catalytic activity for CO oxidation. <i>Nano Letters</i> , 2015 , 15, 682-8	11.5	76
490	Near-Barrierless Ammonium Bisulfate Formation via a Loop-Structure Promoted Proton-Transfer Mechanism on the Surface of Water. <i>Journal of the American Chemical Society</i> , 2016 , 138, 1816-9	16.4	76
489	AlxC Monolayer Sheets: Two-Dimensional Networks with Planar Tetracoordinate Carbon and Potential Applications as Donor Materials in Solar Cell. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 2058-65	6.4	76
488	Aromatic oligoureas: enforced folding and assisted cyclization. <i>Organic Letters</i> , 2006 , 8, 803-6	6.2	76
487	Backbone-rigidified oligo(m-phenylene ethynylenes). <i>Journal of the American Chemical Society</i> , 2004 , 126, 3148-62	16.4	76
486	A new phase diagram of water under negative pressure: The rise of the lowest-density clathrate s-III. <i>Science Advances</i> , 2016 , 2, e1501010	14.3	75
485	Reversing Interfacial Catalysis of Ambipolar WSe Single Crystal. <i>Advanced Science</i> , 2020 , 7, 1901382	13.6	75
484	Application of Electronic Counting Rules for Ligand-Protected Gold Nanoclusters. <i>Accounts of Chemical Research</i> , 2018 , 51, 2739-2747	24.3	75
483	Thin-Film Transformation of NH PbI to CH NH PbI Perovskite: A Methylamine-Induced Conversion-Healing Process. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14723-14727	16.4	74
482	Planar tetracoordinate carbon strips in edge decorated graphene nanoribbon. <i>Journal of the American Chemical Society</i> , 2010 , 132, 5554-5	16.4	73
481	Ab initio study of thiolate-protected Au102 nanocluster. ACS Nano, 2008, 2, 1497-503	16.7	73
480	Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. <i>Nature</i> , 2020 , 577, 60-63	50.4	73
479	Group IVB transition metal trichalcogenides: a new class of 2D layered materials beyond graphene. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2016 , 6, 211-222	7.9	73
478	Lead-Free Dion Dacobson Tin Halide Perovskites for Photovoltaics. ACS Energy Letters, 2019, 4, 276-277	20.1	73

477	Monolayer and bilayer polyaniline CN: two-dimensional semiconductors with high thermal conductivity. <i>Nanoscale</i> , 2018 , 10, 4301-4310	7.7	72
476	Observation of earlier two-to-three dimensional structural transition in gold cluster anions by isoelectronic substitution: MAu(n)(-) (n=8-11; M=Ag,Cu). <i>Journal of Chemical Physics</i> , 2010 , 132, 114306	3.9	72
475	Ab initio calculation of bowl, cage, and ring isomers of C20 and C20 <i>Journal of Chemical Physics</i> , 2005 , 122, 204109	3.9	72
474	Fabrication and understanding of CuSi-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries. <i>Nanoscale</i> , 2018 , 10, 22203-22214	7.7	72
473	CaP: A New Two-Dimensional Functional Material with Desirable Band Gap and Ultrahigh Carrier Mobility. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 1728-1733	6.4	71
472	Fluorinating hexagonal boron nitride into diamond-like nanofilms with tunable band gap and ferromagnetism. <i>Journal of the American Chemical Society</i> , 2011 , 133, 14831-8	16.4	71
471	Two-Dimensional Single-Layer OrganicIhorganic Hybrid Perovskite Semiconductors. <i>Advanced Energy Materials</i> , 2017 , 7, 1601731	21.8	70
470	Tuning the electronic properties of monolayer and bilayer PtSe2via strain engineering. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 3106-3112	7.1	70
469	Self-scrolling MoS metallic wires. <i>Nanoscale</i> , 2018 , 10, 18178-18185	7.7	70
468	Thermal Conductivity of Monolayer MoSe2 and MoS2. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 26067	-36075	i 69
467	Unusual Metallic Microporous Boron Nitride Networks. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 3484-3488	6.4	69
466	Structural evolution of anionic silicon clusters SiN (20 . <i>Journal of Physical Chemistry A</i> , 2006 , 110, 908-1	2 2.8	69
465	Compression Limit of Two-Dimensional Water Constrained in Graphene Nanocapillaries. <i>ACS Nano</i> , 2015 , 9, 12197-204	16.7	68
464	Signature of coexistence of superconductivity and ferromagnetism in two-dimensional NbSe2 triggered by surface molecular adsorption. <i>Nature Communications</i> , 2016 , 7, 11210	17.4	68
463	Investigating active site of gold nanoparticle Au55(PPh3)12Cl6 in selective oxidation. <i>ACS Nano</i> , 2010 , 4, 2009-20	16.7	68
462	Insight into Chemistry on Cloud/Aerosol Water Surfaces. <i>Accounts of Chemical Research</i> , 2018 , 51, 1229	-124337	67
461	Global geometry optimization of silicon clusters described by three empirical potentials. <i>Journal of Chemical Physics</i> , 2003 , 119, 1442-1450	3.9	67
460	Porous Boron Nitride with Tunable Pore Size. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 393-8	6.4	66

(2015-2003)

459	Cooperative effects in one-dimensional chains of three-center hydrogen bonding interactions. Journal of Chemical Physics, 2003 , 118, 3499-3509	3.9	66
458	Edge-decorated graphene nanoribbons by scandium as hydrogen storage media. <i>Nanoscale</i> , 2012 , 4, 915-20	7.7	65
457	Mechanically robust tri-wing graphene nanoribbons with tunable electronic and magnetic properties. <i>Nano Letters</i> , 2010 , 10, 494-8	11.5	65
456	Polymorphic phases of sp3-hybridized carbon under cold compression. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7530-8	16.4	64
455	Exploration of Structures of Two-Dimensional Boron-Silicon Compounds with sp(2) Silicon. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 561-7	6.4	64
454	Formation free energy of clusters in vapor-liquid nucleation: A Monte Carlo simulation study. Journal of Chemical Physics, 1999 , 110, 4471-4476	3.9	64
453	Surprising Stability of Larger Criegee Intermediates on Aqueous Interfaces. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 7740-7744	16.4	63
452	Structure and stability of two dimensional phosphorene with O or NH functionalization. <i>RSC Advances</i> , 2014 , 4, 48017-48021	3.7	63
451	One-pot formation of large macrocycles with modifiable peripheries and internal cavities. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 3150-4	16.4	62
450	Melting points and thermal expansivities of proton-disordered hexagonal ice with several model potentials. <i>Journal of Chemical Physics</i> , 2004 , 121, 7926-31	3.9	62
449	Electron-Transport Properties of Few-Layer Black Phosphorus. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 1996-2002	6.4	61
448	Stability of Metal-Encapsulating Boron Fullerene B40. Journal of Physical Chemistry A, 2015, 119, 11208	- 1:4 8	61
447	The search for the most stable structures of silicon-carbon monolayer compounds. <i>Nanoscale</i> , 2014 , 6, 11685-91	7.7	61
446	Tuning the electronic properties of the golden buckyball by endohedral doping: M@Au16(-) (M = Ag,Zn,In). <i>Journal of Chemical Physics</i> , 2009 , 130, 051101	3.9	61
445	Lotus effect in engineered zirconia. <i>Nano Letters</i> , 2008 , 8, 988-96	11.5	61
444	Effective CO Oxidation on Endohedral Gold-Cage Nanoclusters. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 8234-8238	3.8	61
443	The melting lines of model silicon calculated from coexisting solid-liquid phases. <i>Journal of Chemical Physics</i> , 2004 , 120, 1654-6	3.9	61
442	Tuning thermal contact conductance at graphene-copper interface via surface nanoengineering. <i>Nanoscale</i> , 2015 , 7, 6286-94	7.7	60

441	New Structure Model of Au22(SR)18: Bitetrahederon Golden Kernel Enclosed by [Au6(SR)6] Au(I) Complex. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 1390-5	6.4	60
440	Argon Plasma Treatment to Tune Perovskite Surface Composition for High Efficiency Solar Cells and Fast Photodetectors. <i>Advanced Materials</i> , 2018 , 30, 1705176	24	60
439	Ferroelectric ordering in ice nanotubes confined in carbon nanotubes. <i>Nano Letters</i> , 2008 , 8, 2607-12	11.5	60
438	Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors. <i>Nano Letters</i> , 2017 , 17, 1623-1628	11.5	59
437	Designs of fullerene-based frameworks for hydrogen storage. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 5910-5914	13	59
436	Search for Lowest-Energy Fullerenes 2: C38 to C80 and C112 to C120\(\textit{IJournal of Physical Chemistry C, \textit{2007}, 111, 17671-17677}\)	3.8	59
435	Search for lowest-energy fullerenes: C98 to C110. Journal of Physical Chemistry A, 2006, 110, 7672-6	2.8	59
434	Stable Formamidinium-Based Perovskite Solar Cells via In Situ Grain Encapsulation. <i>Advanced Energy Materials</i> , 2018 , 8, 1800232	21.8	59
433	Two-Dimensional Metal-Free Organic Multiferroic Material for Design of Multifunctional Integrated Circuits. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 1973-1978	6.4	58
432	Tuning the electronic properties of transition-metal trichalcogenides via tensile strain. <i>Nanoscale</i> , 2015 , 7, 15385-91	7.7	58
431	Self-Catalytic Reaction of SO and NH To Produce Sulfamic Acid and Its Implication to Atmospheric Particle Formation. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11020-11028	16.4	58
430	Microscopic insight into surface wetting: relations between interfacial water structure and the underlying lattice constant. <i>Physical Review Letters</i> , 2013 , 110, 126101	7.4	58
429	Titanium Trisulfide Monolayer: Theoretical Prediction of a New Direct-Gap Semiconductor with High and Anisotropic Carrier Mobility. <i>Angewandte Chemie</i> , 2015 , 127, 7682-7686	3.6	58
428	Inorganic nanoribbons with unpassivated zigzag edges: Half metallicity and edge reconstruction. <i>Nano Research</i> , 2011 , 4, 233-239	10	58
427	Ab initio study of structural and magnetic properties of TM(n)(ferrocene)(n+1) (TM = Sc, Ti, V, Mn) sandwich clusters and nanowires (n = infinity). ACS Nano, 2009, 3, 537-45	16.7	58
426	Electronic structures and electronic spectra of all-boron fullerene B40. <i>Chemical Communications</i> , 2015 , 51, 3185-8	5.8	57
425	Structures and stability of medium-sized silicon clusters. III. Reexamination of motif transition in growth pattern from Si15 to Si20. <i>Journal of Chemical Physics</i> , 2005 , 123, 164303	3.9	57
424	Ginzburg-Landau theory for the solid-liquid interface of bcc elements. <i>Physical Review A</i> , 1987 , 35, 2611	- 2.6 18	57

(2009-2019)

423	Monolayer triphosphates MP (M = Sn, Ge) with excellent basal catalytic activity for hydrogen evolution reaction. <i>Nanoscale</i> , 2019 , 11, 12210-12219	7.7	56	
422	Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 12946-12951	11.5	56	
421	Unraveling the hidden function of a stabilizer in a precursor in improving hybrid perovskite film morphology for high efficiency solar cells. <i>Energy and Environmental Science</i> , 2016 , 9, 867-872	35.4	56	
420	Homogenous Alloys of Formamidinium Lead Triiodide and Cesium Tin Triiodide for Efficient Ideal-Bandgap Perovskite Solar Cells. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 12658-12662	16.4	56	
419	Unraveling the high-activity nature of FeNII electrocatalysts for the oxygen reduction reaction: the extraordinary synergy between FeN4 and Fe4N. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 11792-118	8 b 1	55	
418	Semiring chemistry of Au25(SR)18: fragmentation pathway and catalytic active site. <i>Journal of the American Chemical Society</i> , 2013 , 135, 18067-79	16.4	55	
417	Chemically decorated boron-nitride nanoribbons. Frontiers of Physics in China, 2009, 4, 367-372		55	
416	Thermal stability of nanostructurally stabilized zirconium oxide. <i>Nanotechnology</i> , 2007 , 18, 415702	3.4	55	
415	Possible lowest-energy geometry of silicon clusters Si21 and Si25. <i>Journal of the American Chemical Society</i> , 2003 , 125, 13318-9	16.4	55	
414	Energetics and cooperativity in three-center hydrogen bonding interactions. II. Intramolecular hydrogen bonding systems. <i>Journal of Chemical Physics</i> , 2001 , 115, 6036-6041	3.9	55	
413	Machine learning and artificial neural network prediction of interfacial thermal resistance between graphene and hexagonal boron nitride. <i>Nanoscale</i> , 2018 , 10, 19092-19099	7.7	55	
412	SLIPS-TENG: robust triboelectric nanogenerator with optical and charge transparency using a slippery interface. <i>National Science Review</i> , 2019 , 6, 540-550	10.8	54	
411	Zero-Dimensional Organic-Inorganic Perovskite Variant: Transition between Molecular and Solid Crystal. <i>Journal of the American Chemical Society</i> , 2018 , 140, 10456-10463	16.4	54	
410	A photoelectron spectroscopy and ab initio study of the structures and chemical bonding of the B25(-) cluster. <i>Journal of Chemical Physics</i> , 2014 , 141, 034303	3.9	54	
409	Gold-coated transition-metal anion [Mn13@Au20]- with ultrahigh magnetic moment. <i>Journal of the American Chemical Society</i> , 2007 , 129, 4110-1	16.4	54	
408	Search for global minimum geometries for medium sized germanium clusters: Ge12-Ge20. <i>Journal of Chemical Physics</i> , 2005 , 122, 164305	3.9	54	
407	Half-Metallic Behavior in 2D Transition Metal Dichalcogenides Nanosheets by Dual-Native-Defects Engineering. <i>Advanced Materials</i> , 2017 , 29, 1703123	24	53	
406	Double metallocene nanowires. <i>Journal of the American Chemical Society</i> , 2009 , 131, 14246-8	16.4	53	

405	Eighteen functional monolayer metal oxides: wide bandgap semiconductors with superior oxidation resistance and ultrahigh carrier mobility. <i>Nanoscale Horizons</i> , 2019 , 4, 592-600	10.8	51
404	Unraveling Oxygen Evolution in Li-Rich Oxides: A Unified Modeling of the Intermediate Peroxo/Superoxo-like Dimers. <i>Journal of the American Chemical Society</i> , 2019 , 141, 10751-10759	16.4	51
403	Tin and germanium based two-dimensional Ruddlesden-Popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications. <i>Nanoscale</i> , 2018 , 10, 11314-11319	7.7	51
402	First-principles study of a carbon nanobud. <i>ACS Nano</i> , 2008 , 2, 1459-65	16.7	51
401	Structural and magnetic properties of Gd3N@C80. Journal of Physical Chemistry B, 2006, 110, 23637-40	3.4	50
400	Effect of polarizability of halide anions on the ionic solvation in water clusters. <i>Journal of Chemical Physics</i> , 2003 , 119, 6083-6091	3.9	50
399	Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials. <i>Nature Communications</i> , 2017 , 8, 15154	17.4	49
398	B27(-): Appearance of the smallest planar boron cluster containing a hexagonal vacancy. <i>Journal of Chemical Physics</i> , 2015 , 142, 204305	3.9	49
397	Vaporllquid coexistence of quasi-two-dimensional Stockmayer fluids. <i>Journal of Chemical Physics</i> , 1997 , 106, 3311-3317	3.9	49
396	Anisotropy of crystal-melt interfacial free energy of silicon by simulation. <i>Applied Physics Letters</i> , 2008 , 92, 221903	3.4	49
395	Ab initio studies of quasi-one-dimensional pentagon and hexagon ice nanotubes. <i>Journal of Chemical Physics</i> , 2003 , 118, 3913-3916	3.9	49
394	A small-system ensemble Monte Carlo simulation of supersaturated vapor: Evaluation of barrier to nucleation. <i>Journal of Chemical Physics</i> , 2000 , 112, 294-300	3.9	49
393	Double Perovskite Cs2BBiX6 (B = Ag, Cu; X = Br, Cl)/TiO2 Heterojunction: An Efficient Pb-Free Perovskite Interface for Charge Extraction. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 4471-4480	3.8	48
392	Molecular dynamics simulation of supersaturated vapor nucleation in slit pore. <i>Journal of Chemical Physics</i> , 2000 , 112, 4279-4285	3.9	48
391	A vesicle cell under collision with a Janus or homogeneous nanoparticle: translocation dynamics and late-stage morphology. <i>Nanoscale</i> , 2013 , 5, 9089-100	7.7	47
390	Carrier-tunable magnetic ordering in vanadium-naphthalene sandwich nanowires. <i>Journal of the American Chemical Society</i> , 2010 , 132, 10215-7	16.4	47
389	A new strategy for folding oligo(m-phenylene ethynylenes). Chemical Communications, 2003, 56-7	5.8	47
388	Large-scale molecular-dynamics simulation of nanoscale hydrophobic interaction and nanobubble formation. <i>Journal of Chemical Physics</i> , 2005 , 123, 204707	3.9	46

387	Highly efficient N fixation catalysts: transition-metal carbides MC (MXenes). Nanoscale, 2020, 12, 538-54	17 .7	46
386	Energetics and cooperativity in three-center hydrogen bonding interactions. I. Diacetamide-X dimers (X=HCN, CH3OH). <i>Journal of Chemical Physics</i> , 2001 , 115, 6030-6035	3.9	45
385	Water-Promoted O2 Dissociation on Small-Sized Anionic Gold Clusters. ACS Catalysis, 2012, 2, 2614-262	113.1	44
384	Structure evolution of gold cluster anions between the planar and cage structures by isoelectronic substitution: Au(n)- (n = 13-15) and MAu(n)- (n = 12-14; M = Ag, Cu). <i>Journal of Chemical Physics</i> , 2011 , 134, 054306	3.9	44
383	Graphene-like bilayer hexagonal silicon polymorph. Nano Research, 2010, 3, 694-700	10	44
382	Resolving the puzzle of single-atom silver dispersion on nanosized EAlO surface for high catalytic performance. <i>Nature Communications</i> , 2020 , 11, 529	17.4	43
381	Interlayer thermal conductance within a phosphorene and graphene bilayer. <i>Nanoscale</i> , 2016 , 8, 19211-	1 ,9 . 2 18	43
3 80	Thermal contact resistance across a linear heterojunction within a hybrid graphene/hexagonal boron nitride sheet. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 24164-70	3.6	43
379	Multiferroic materials based on organic transition-metal molecular nanowires. <i>Journal of the American Chemical Society</i> , 2012 , 134, 14423-9	16.4	42
378	Highly selective adsorption of methanol in carbon nanotubes immersed in methanol-water solution. <i>Journal of Chemical Physics</i> , 2012 , 137, 034501	3.9	42
377	Shape-persistent macrocyclic aromatic tetrasulfonamides: Molecules with nanosized cavities and their nanotubular assemblies in solid state. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 10850-5	11.5	42
376	Nucleation of water and methanol droplets on cations and anions: the sign preference. <i>Physical Review Letters</i> , 2001 , 86, 5080-3	7.4	42
375	Directly predicting limiting potentials from easily obtainable physical properties of graphene-supported single-atom electrocatalysts by machine learning. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 5663-5670	13	42
374	Direct simulation evidence of generation of oxygen vacancies at the golden cage Au16 and TiO2 (110) interface for CO oxidation. <i>Journal of the American Chemical Society</i> , 2014 , 136, 15857-60	16.4	41
373	Detecting weak interactions between Au- and gas molecules: a photoelectron spectroscopic and ab initio study. <i>Journal of the American Chemical Society</i> , 2009 , 131, 9484-5	16.4	41
372	Sawtooth-like graphene nanoribbon. <i>Nano Research</i> , 2008 , 1, 40-45	10	41
371	Structural and electronic properties of Gd@C60: All-electron relativistic total-energy study. <i>Chemical Physics Letters</i> , 2006 , 425, 82-84	2.5	41
370	PtPd(111) Surface versus PtAu(111) Surface: Which One Is More Active for Methanol Oxidation?. <i>ACS Catalysis</i> , 2018 , 8, 132-143	13.1	41

369	Quasi-1D TiS Nanoribbons: Mechanical Exfoliation and Thickness-Dependent Raman Spectroscopy. <i>ACS Nano</i> , 2018 , 12, 12713-12720	16.7	41
368	Interaction of the NH2 Radical with the Surface of a Water Droplet. <i>Journal of the American Chemical Society</i> , 2015 , 137, 12070-8	16.4	40
367	Water in Inhomogeneous Nanoconfinement: Coexistence of Multilayered Liquid and Transition to Ice Nanoribbons. <i>ACS Nano</i> , 2015 , 9, 9877-84	16.7	40
366	Unraveling a generic growth pattern in structure evolution of thiolate-protected gold nanoclusters. <i>Nanoscale</i> , 2016 , 8, 7396-401	7.7	40
365	Isomerism and structural fluxionality in the Au26 and Au26(-) nanoclusters. ACS Nano, 2014 , 8, 7413-22	16.7	40
364	Thermodynamic expansion of nucleation free-energy barrier and size of critical nucleus near the vapor-liquid coexistence. <i>Journal of Chemical Physics</i> , 1999 , 110, 3466-3471	3.9	40
363	Unraveling structures of protection ligands on gold nanoparticle Au68(SH)32. <i>Science Advances</i> , 2015 , 1, e1400211	14.3	39
362	High-Performance Ru /CeO Single-Atom Catalyst for CO Oxidation: A Computational Exploration. <i>ChemPhysChem</i> , 2016 , 17, 3170-3175	3.2	39
361	Why Is MP2-Water "Cooler" and "Denser" than DFT-Water?. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 680-4	6.4	39
360	Ab initio theoretical study of non-covalent adsorption of aromatic molecules on boron nitride nanotubes. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 11766-72	3.6	39
359	Formation of HONO from the NH-promoted hydrolysis of NO dimers in the atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2018 , 115, 7236-7241	11.5	39
358	"EHole-II Interaction Promoted Photocatalytic Hydrodefluorination via Inner-Sphere Electron Transfer. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15805-15808	16.4	38
357	Structural Evolution of Medium-Sized Gold Clusters Aun[(n = 36, 37, 38): Appearance of Bulk-Like Face Centered Cubic Fragment. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 6887-6892	3.8	38
356	Simulation Evidence of Hexagonal-to-Tetragonal ZnSe Structure Transition: A Monolayer Material with a Wide-Range Tunable Direct Bandgap. <i>Advanced Science</i> , 2015 , 2, 1500290	13.6	38
355	Hydrogen bonding and cooperative effects in mixed dimers and trimers of methanol and trifluoromethanol: An ab initio study. <i>Journal of Chemical Physics</i> , 1999 , 110, 6329-6338	3.9	38
354	Half-Metallicity in One-Dimensional Metal Trihydride Molecular Nanowires. <i>Journal of the American Chemical Society</i> , 2017 , 139, 6290-6293	16.4	37
353	Evidence of low-density and high-density liquid phases and isochore end point for water confined to carbon nanotube. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 4066-4071	11.5	37
352	Kinetic and mechanistic investigations of the direct synthesis of dimethyl carbonate from carbon dioxide over ceria nanorod catalysts. <i>Journal of Catalysis</i> , 2016 , 340, 295-301	7.3	37

351	Direct X-ray observation of trapped COlin a predesigned porphyrinic metal-organic framework. <i>Chemistry - A European Journal</i> , 2014 , 20, 7632-7	4.8	37
350	Three-dimensional network model of carbon containing only sp2-carbon bonds and boron nitride analogues. <i>Chemical Communications</i> , 2011 , 47, 4406-8	5.8	37
349	Onset of double helical structure in small-sized homoleptic gold thiolate clusters. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 629-32	2.8	37
348	Aromatic oligoamide macrocycles from the bimolecular coupling of folded oligomeric precursors. <i>New Journal of Chemistry</i> , 2009 , 33, 729	3.6	37
347	Inch-Scale Grain Boundary Free Organic Crystals Developed by Nucleation Seed-Controlled Shearing Method. <i>ACS Applied Materials & Developed Shearing Method</i> . <i>ACS Applied Materials & Developed Shearing Method</i> .	9.5	37
346	Design of ferroelectric organic molecular crystals with ultrahigh polarization. <i>Journal of the American Chemical Society</i> , 2014 , 136, 6428-36	16.4	36
345	Charge-injection induced magnetism and half metallicity in single-layer hexagonal group III/V (BN, BP, AlN, AlP) systems. <i>Applied Physics Letters</i> , 2010 , 97, 093109	3.4	36
344	Self-Assembly of Janus Oligomers into Onion-like Vesicles with Layer-by-Layer Water Discharging Capability: A Minimalist Model. <i>ACS Nano</i> , 2016 , 10, 8026-37	16.7	36
343	Multifunctional Binary Monolayers Ge P: Tunable Band Gap, Ferromagnetism, and Photocatalyst for Water Splitting. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 19897-19905	9.5	36
342	Unraveling the mechanism of selective ion transport in hydrophobic subnanometer channels. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 10851-6	11.5	35
341	Reaction of Criegee Intermediate with Nitric Acid at the Air-Water Interface. <i>Journal of the American Chemical Society</i> , 2018 , 140, 4913-4921	16.4	35
340	Electronic and transport properties of porous graphenes: two-dimensional benzo- and aza-fused Etonjugated-microporous-polymer sheets and boronflitrogen co-doped derivatives. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 2902-2907	7.1	35
339	Enantioselective desymmetrization via carbonyl-directed catalytic asymmetric hydroboration and Suzuki-Miyaura cross-coupling. <i>Organic Letters</i> , 2015 , 17, 940-3	6.2	35
338	Eselective directed catalytic asymmetric hydroboration of 1,1-disubstituted alkenes. <i>Chemical Communications</i> , 2012 , 48, 12180-2	5.8	35
337	Search for global-minimum geometries of medium-sized germanium clusters. II. Motif-based low-lying clusters Ge21-Ge29. <i>Journal of Chemical Physics</i> , 2006 , 124, 184309	3.9	35
336	Heterogeneous nucleation on mesoscopic wettable particles: A hybrid thermodynamic/density-functional theory. <i>Journal of Chemical Physics</i> , 2002 , 117, 1851-1868	3.9	35
335	A patching model for surface tension and the Tolman length. <i>Journal of Chemical Physics</i> , 1999 , 111, 37	705.371	335
334	Interaction of SO with the Surface of a Water Nanodroplet. <i>Journal of the American Chemical Society</i> , 2017 , 139, 17168-17174	16.4	34

333	Twisted MX/MoS heterobilayers: effect of van der Waals interaction on the electronic structure. <i>Nanoscale</i> , 2017 , 9, 19131-19138	7.7	34
332	Ab initiostudy of hydrogen adsorption on benzenoid linkers in metal®rganic framework materials. Journal of Physics Condensed Matter, 2007 , 19, 386220	1.8	34
331	Descriptor-Based Design Principle for Two-Dimensional Single-Atom Catalysts: Carbon Dioxide Electroreduction. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 3481-3487	6.4	34
330	Oxygen Intercalation of Graphene on Transition Metal Substrate: An Edge-Limited Mechanism. Journal of Physical Chemistry Letters, 2015 , 6, 4099-105	6.4	33
329	Porphyrinic porous organic frameworks: preparation and post-synthetic modification via demetallation. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 14876-14882	13	33
328	Large negative magnetoresistance induced by anionic solid solutions in two-dimensional spin-frustrated transition metal chalcogenides. <i>Physical Review Letters</i> , 2014 , 113, 157202	7.4	33
327	Patterned Hydrogenation of Graphene: Magnetic Quantum Dot Array. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 139-142	3.8	33
326	Hydrogen Production via Efficient Formic Acid Decomposition: Engineering the Surface Structure of Pd-Based Alloy Catalysts by Design. <i>ACS Catalysis</i> , 2019 , 9, 781-790	13.1	33
325	Aluminum and Nitrogen Codoped Graphene: Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction. <i>ACS Catalysis</i> , 2019 , 9, 610-619	13.1	33
324	Structural Evolution of Core-Shell Gold Nanoclusters: Au (n = 42-50). <i>ACS Nano</i> , 2016 , 10, 10013-10022	16.7	32
323	Hollow polyhedral structures in small gold-sulfide clusters. ACS Nano, 2011, 5, 1441-9	16.7	32
322	Single-walled MoTe(2) nanotubes. <i>Nano Letters</i> , 2007 , 7, 2987-92	11.5	32
321	Copper(i) sulfide: a two-dimensional semiconductor with superior oxidation resistance and high carrier mobility. <i>Nanoscale Horizons</i> , 2019 , 4, 223-230	10.8	32
320	Lateral and flexural phonon thermal transport in graphene and stanene bilayers. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 6554-6562	3.6	31
319	Nitric Acid-Amine Chemistry in the Gas Phase and at the Air-Water Interface. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6456-6466	16.4	31
318	Spontaneous formation of one-dimensional hydrogen gas hydrate in carbon nanotubes. <i>Journal of the American Chemical Society</i> , 2014 , 136, 10661-8	16.4	31
317	Organometallic Hexahapto-Functionalized Graphene: Band Gap Engineering with Minute Distortion to the Planar Structure. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 22156-22161	3.8	31
316	Two Dimensional Epitaxial Water Adlayer on Mica with Graphene Coating: An ab Initio Molecular Dynamics Study. <i>Journal of Chemical Theory and Computation</i> , 2012 , 8, 3034-43	6.4	31

315	Effects of confinement on the phase behavior of supercooled water. <i>Chemical Physics Letters</i> , 1998 , 285, 278-283	2.5	31
314	Effect of uniform electric field on homogeneous vaporliquid nucleation and phase equilibria. II. Extended simple point charge model water. <i>Journal of Chemical Physics</i> , 1999 , 110, 2533-2538	3.9	31
313	Controlling states of water droplets on nanostructured surfaces by design. <i>Nanoscale</i> , 2017 , 9, 18240-18	8 7 2 4 5	30
312	Differential Permeability of Proton Isotopes through Graphene and Graphene Analogue Monolayer. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 3395-400	6.4	30
311	Self-Assembly of Triblock Janus Nanoparticle in Nanotube. <i>Journal of Chemical Theory and Computation</i> , 2013 , 9, 179-87	6.4	30
310	CO chemisorption on the surfaces of the golden cages. <i>Journal of Chemical Physics</i> , 2009 , 131, 234305	3.9	30
309	Structures and relative stability of medium- and large-sized silicon clusters. VI. Fullerene cage motifs for low-lying clusters Si(39), Si(40), Si(50), Si(60), Si(70), and Si(80). <i>Journal of Chemical Physics</i> , 2008 , 128, 104316	3.9	30
308	Molecular dynamics of homogeneous nucleation in the vapor phase of Lennard-Jones. III. Effect of carrier gas pressure. <i>Journal of Chemical Physics</i> , 2007 , 126, 124320	3.9	30
307	A patching model for surface tension of spherical droplet and Tolman length. II. <i>Journal of Chemical Physics</i> , 1999 , 111, 10602-10610	3.9	30
306	Prediction of a new ice clathrate with record low density: A potential candidate as ice XIX in guest-free form. <i>Chemical Physics Letters</i> , 2017 , 671, 186-191	2.5	29
305	Probing Structural, Electronic, and Magnetic Properties of Iron-Doped Semiconductor Clusters Fe2Gen[10 (n = 3112) via Joint Photoelectron Spectroscopy and Density Functional Study. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 7037-7046	3.8	29
304	The structural isomerism in gold nanoclusters. <i>Nanoscale</i> , 2018 , 10, 9476-9483	7.7	29
303	Mn monolayer modified Rh for syngas-to-ethanol conversion: a first-principles study. <i>Nanoscale</i> , 2012 , 4, 1123-9	7.7	29
302	First-principles molecular dynamics simulation of atmospherically relevant anion solvation in supercooled water droplet. <i>Journal of the American Chemical Society</i> , 2013 , 135, 15549-58	16.4	29
301	Water desalination through rim functionalized carbon nanotubes. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3583-3591	13	28
300	Computational analysis of stable hard structures in the Ti-B system. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 15607-17	9.5	28
299	Extremely strong tubular stacking of aromatic oligoamide macrocycles. <i>Chemical Science</i> , 2015 , 6, 152-1	5 97.4	28
298	Graphene/antimonene/graphene heterostructure: A potential anode for sodium-ion batteries. <i>Carbon</i> , 2019 , 153, 767-775	10.4	28

297	Mechanistic Insights into Carbonyl-Directed Rhodium-Catalyzed Hydroboration: ab Initio Study of a Cyclic III Insaturated Amide. <i>ACS Catalysis</i> , 2014 , 4, 763-773	13.1	28
296	Electronic Structures of Defective Boron Nitride Nanotubes under Transverse Electric Fields. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 8424-8428	3.8	28
295	Metallic surface doping of metal halide perovskites. <i>Nature Communications</i> , 2021 , 12, 7	17.4	28
294	Criegee intermediate-hydrogen sulfide chemistry at the air/water interface. <i>Chemical Science</i> , 2017 , 8, 5385-5391	9.4	27
293	Cadmium Modified HZSM-5: A Highly Efficient Catalyst for Selective Transformation of Methanol to Aromatics. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 12508-12519	3.9	27
292	Molecular Dynamics Simulation of Water Nanodroplet Bounce Back from Flat and Nanopillared Surface. <i>Langmuir</i> , 2017 , 33, 10184-10192	4	27
291	Tuning the magnetic and electronic properties of bilayer graphene nanoribbons on Si(001) by bias voltage. <i>Physical Review B</i> , 2010 , 81,	3.3	27
290	Crescent oligoamides as hosts: conformation-dependent binding specificity. <i>Organic and Biomolecular Chemistry</i> , 2009 , 7, 3643-7	3.9	27
289	Freezing transition of a strongly dipolar simple fluid. <i>Physical Review E</i> , 2000 , 61, R2188-R2191	2.4	27
288	Confined water in hydrophobic nanopores: dynamics of freezing into bilayer ice. <i>Physical Review E</i> , 1999 , 60, 5833-40	2.4	27
287	Hydrogen bonding and orientation effects on the accommodation of methylamine at the air-water interface. <i>Journal of Chemical Physics</i> , 2016 , 144, 214701	3.9	27
286	Metallic Nickel Hydroxide Nanosheets Give Superior Electrocatalytic Oxidation of Urea for Fuel Cells. <i>Angewandte Chemie</i> , 2016 , 128, 12653-12657	3.6	26
285	Elastic properties of poly(vinyldene fluoride) (PVDF) crystals: A density functional theory study. Journal of Applied Physics, 2011 , 109, 093514	2.5	26
284	Chemisorption-Induced 2DBDDD Structural Transitions in Gold Heptamer: (CO)nAu7[[n = 1]]). Journal of Physical Chemistry Letters, 2011 , 2, 2288-2293	6.4	26
283	Homogeneous nucleation at high supersaturation and heterogeneous nucleation on microscopic wettable particles: A hybrid thermodynamic/density-functional theory. <i>Journal of Chemical Physics</i> , 2006 , 125, 144515	3.9	26
282	Design of Single-Molecule Multiferroics for Efficient Ultrahigh-Density Nonvolatile Memories. <i>Advanced Science</i> , 2019 , 6, 1801572	13.6	26
281	Assessment of Catalytic Activities of Gold Nanoclusters with Simple Structure Descriptors. <i>ACS Catalysis</i> , 2018 , 8, 9702-9710	13.1	26
280	Enforced Tubular Assembly of Electronically Different Hexakis(m-Phenylene Ethynylene) Macrocycles: Persistent Columnar Stacking Driven by Multiple Hydrogen-Bonding Interactions. Journal of the American Chemical Society 2017, 139, 15950-15957	16.4	25

279	B-Doped MnN4-G Nanosheets as Bifunctional Electrocatalysts for Both Oxygen Reduction and Oxygen Evolution Reactions. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 18711-18717	8.3	25	
278	Reexamination of the depolarized-light-scattering spectra of glass-forming liquids. <i>Physical Review E</i> , 1994 , 50, 1711-1716	2.4	25	
277	In- and Ga-based inorganic double perovskites with direct bandgaps for photovoltaic applications. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 21691-21695	3.6	24	
276	Tri-Wing Graphene Nano-Paddle-Wheel with a Single-File Metal Joint: Formation of Multi-Planar Tetracoordinated-Carbon (ptC) Strips. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 11378-11385	3.8	24	
275	Carbon Nanotube Superarchitectures: An Ab Initio Study. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 18	13,4818	81 <u>8</u> 5	
274	Ab initio prediction of amorphous B84. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 2245-9	2.8	24	
273	Cooperative effects in two-dimensional ring-like networks of three-center hydrogen bonding interactions. <i>Journal of Chemical Physics</i> , 2005 , 122, 184325	3.9	24	
272	Time-Resolved Measurements of Photocarrier Dynamics in TiS3 Nanoribbons. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 18334-8	9.5	24	
271	An ab initio study of the nickel-catalyzed transformation of amorphous carbon into graphene in rapid thermal processing. <i>Nanoscale</i> , 2016 , 8, 9746-55	7.7	24	
270	Point defects in lines in single crystalline phosphorene: directional migration and tunable band gaps. <i>Nanoscale</i> , 2016 , 8, 17801-17808	7.7	24	
269	Understanding the quenching nature of Mn in wide band gap inorganic compounds: design principles for Mn phosphors with higher efficiency. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 1699	2-1:699	9 ²⁴	
268	Two-Dimensional Gold Sulfide Monolayers with Direct Band Gap and Ultrahigh Electron Mobility. Journal of Physical Chemistry Letters, 2019 , 10, 3773-3778	6.4	23	
267	Phonon thermal transport in a graphene/MoSe van der Waals heterobilayer. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 2637-2645	3.6	23	
266	Unraveling a New Chemical Mechanism of Missing Sulfate Formation in Aerosol Haze: Gaseous NO with Aqueous HSO/SO. <i>Journal of the American Chemical Society</i> , 2019 , 141, 19312-19320	16.4	23	
265	Interfaces Select Specific Stereochemical Conformations: The Isomerization of Glyoxal at the Liquid Water Interface. <i>Journal of the American Chemical Society</i> , 2017 , 139, 27-30	16.4	23	
264	Liquid-solid and solid-solid phase transition of monolayer water: high-density rhombic monolayer ice. <i>Journal of Chemical Physics</i> , 2014 , 140, 184507	3.9	23	
263	Dipole-induced, thermally stable lamellar structure by polar aromatic silane. <i>Journal of the American Chemical Society</i> , 2009 , 131, 900-1	16.4	23	
262	GasIlquid nucleation in two-dimensional fluids. <i>Journal of Chemical Physics</i> , 1996 , 104, 2699-2704	3.9	23	

261	Phase transitions and ferroelasticity hultiferroicity in bulk and two-dimensional silver and copper monohalides. <i>Nanoscale Horizons</i> , 2019 , 4, 1106-1112	10.8	22
2 60	Mechanistic Insight into the Reaction of Organic Acids with SO at the Air-Water Interface. Angewandte Chemie - International Edition, 2019, 58, 8351-8355	16.4	22
259	Unusual Magnetic Properties of Functionalized Graphene Nanoribbons. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 2482-2488	6.4	22
258	Free-Standing All-Nanoparticle Thin Fibers: A Novel Nanostructure Bridging Zero- and One-Dimensional Nanoscale Features. <i>Advanced Materials</i> , 2009 , 21, 314-319	24	22
257	Molecular simulations of solid-liquid interfacial tension of silicon. <i>Journal of Chemical Physics</i> , 2006 , 124, 236103	3.9	22
256	Effect of apical defects and doped atoms on field emission of boron nitride nanocones. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 16346-52	3.4	22
255	Probing the structures of gold-aluminum alloy clusters AuxAly(-): a joint experimental and theoretical study. <i>Nanoscale</i> , 2016 , 8, 9805-14	7.7	22
254	High ZT 2D Thermoelectrics by Design: Strong Interlayer Vibration and Complete Band-Extrema Alignment. <i>Advanced Functional Materials</i> , 2020 , 30, 2001200	15.6	21
253	Water Confined in Nanocapillaries: Two-Dimensional Bilayer Squarelike Ice and Associated Solid Diquid Bolid Transition. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 6704-6712	3.8	21
252	Al2C Monolayer Sheet and Nanoribbons with Unique Direction-Dependent Acoustic-Phonon-Limited Carrier Mobility and Carrier Polarity. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 302-7	6.4	21
251	Integration of a functionalized graphene nano-network into a planar perovskite absorber for high-efficiency large-area solar cells. <i>Materials Horizons</i> , 2018 , 5, 868-873	14.4	21
250	Au6S2 monolayer sheets: metallic and semiconducting polymorphs. <i>Materials Horizons</i> , 2017 , 4, 1085-1	094.4	21
249	Fluorinating Hexagonal Boron Nitride/Graphene Multilayers into Hybrid Diamondlike Nanofilms with Tunable Energy Gap. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 21678-21684	3.8	21
248	Computer simulation of bilayer ice: structures and thermodynamics. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2003 , 319, 163-174	3.3	21
247	Effect of an electric field on the surface tension of a dipolar-quadrupolar fluid and its implication for sign preference in droplet nucleation. <i>Physical Review Letters</i> , 2002 , 89, 246104	7.4	21
246	Statistical Mechanics of Surface Tension and Tolman Length of Dipolar Fluids <i>Journal of Physical Chemistry B</i> , 2001 , 105, 11586-11594	3.4	21
245	Structural and magnetic evolution of bimetallic MnAu clusters driven by asymmetric atomic migration. <i>Nano Letters</i> , 2014 , 14, 1362-8	11.5	20
244	New Computational Approach to Determine Liquid-Solid Phase Equilibria of Water Confined to Slit Nanopores. <i>Journal of Chemical Theory and Computation</i> , 2013 , 9, 3299-310	6.4	20

243	Nanochannel with uniform and Janus surfaces: shear thinning and thickening in surfactant solution. <i>Langmuir</i> , 2012 , 28, 2866-72	4	20
242	Solid-Liquid Interfacial Free Energy of Water: A Molecular Dynamics Simulation Study. <i>Journal of Chemical Theory and Computation</i> , 2007 , 3, 1494-8	6.4	20
241	Formation of Quasi Two-dimensional Bilayer Ice in Hydrophobic Slits: A Possible Candidate for Ice XIII?. <i>Molecular Simulation</i> , 2003 , 29, 619-626	2	20
240	Rotational Barrier for 1,1-Difluoroethane, 1,1,1,2-Tetrafluoroethane, Pentafluoroethane, and Hexafluoroethane: A Density Functional and ab Initio Molecular Orbital Study. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 654-658	2.8	20
239	A type-I van der Waals heterobilayer of WSe/MoTe. <i>Nanotechnology</i> , 2018 , 29, 335203	3.4	20
238	A molecular perspective for global modeling of upper atmospheric NH from freezing clouds. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 6147-6152	11.5	20
237	Niobium oxide dihalides NbOX2: a new family of two-dimensional van der Waals layered materials with intrinsic ferroelectricity and antiferroelectricity. <i>Nanoscale Horizons</i> , 2019 , 4, 1113-1123	10.8	19
236	Two-dimensional interlocked pentagonal bilayer ice: how do water molecules form a hydrogen bonding network?. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 14216-21	3.6	19
235	Polygermanes: bandgap engineering via tensile strain and side-chain substitution. <i>Chemical Communications</i> , 2014 , 50, 9126-9	5.8	19
234	Amide Functionalization of Graphene and Carbon Nanotubes: Coverage- and Pattern-Dependent Electronic and Magnetic Properties. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 13722-13730	3.8	19
233	[CTi7(2+)]: Heptacoordinate Carbon Motif?. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 2264-8	6.4	19
232	Two-dimensional to three-dimensional structural transition of gold cluster Au10 during soft landing on TiO2 surface and its effect on CO oxidation. <i>Journal of Chemical Physics</i> , 2010 , 133, 134707	3.9	19
231	Size-Dependent Phase Changes in Water Clusters. <i>Journal of Chemical Theory and Computation</i> , 2011 , 7, 3083-7	6.4	19
230	Integral equation and Monte Carlo simulation studies of clusters in infinitely dilute supercritical solutions. <i>Chemical Physics Letters</i> , 1995 , 239, 168-172	2.5	19
229	Formation of Trilayer Ices in Graphene Nanocapillaries under High Lateral Pressure. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 8109-8115	3.8	19
228	Au13(8e): A secondary block for describing a special group of liganded gold clusters containing icosahedral Au13 motifs. <i>Chemical Physics Letters</i> , 2017 , 675, 35-39	2.5	18
227	Molecular Insight into Different Denaturing Efficiency of Urea, Guanidinium, and Methanol: A Comparative Simulation Study. <i>Journal of Chemical Theory and Computation</i> , 2013 , 9, 2540-51	6.4	18
226	Search for lowest-energy nonclassical fullerenes III: C22. Journal of Physical Chemistry A, 2009, 113, 883	9 <u>2</u> 481	18

225	Crystalline ice grown on the surface of the ferroelectric polymer poly(vinylidene fluoride) (70%) and trifluoroethylene (30%). <i>Journal of the American Chemical Society</i> , 2005 , 127, 17261-5	16.4	18
224	An extension of the quasicontinuum treatment of multiscale solid systems to nonzero temperature. <i>Journal of Chemical Physics</i> , 2004 , 121, 9279-82	3.9	18
223	Coarse-graining description of solid systems at nonzero temperature. <i>Journal of Chemical Physics</i> , 2003 , 119, 8013-8023	3.9	18
222	Monte Carlo simulation of homogeneous binary vapor I quid nucleation: Mutual enhancement of nucleation in a partially miscible system. <i>Journal of Chemical Physics</i> , 2001 , 115, 8518-8524	3.9	18
221	Molecular dynamics study of a phase-separating fluid mixture under shear flow. <i>Physical Review E</i> , 1999 , 59, 3223-3230	2.4	18
220	Catalytic Directional Cutting of Hexagonal Boron Nitride: The Roles of Interface and Etching Agents. <i>Nano Letters</i> , 2017 , 17, 3208-3214	11.5	17
219	Structural Evolution of Gold Clusters Au (n = 21-25) Revisited. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 2466-2474	2.8	17
218	Lead-free low-dimensional tin halide perovskites with functional organic spacers: breaking the charge-transport bottleneck. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 16742-16747	13	17
217	Tuning the Stereoselectivity and Solvation Selectivity at Interfacial and Bulk Environments by Changing Solvent Polarity: Isomerization of Glyoxal in Different Solvent Environments. <i>Journal of the American Chemical Society</i> , 2018 , 140, 5535-5543	16.4	17
216	Direct observation of 2-dimensional ices on different surfaces near room temperature without confinement. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 16723-16728	11.5	17
215	Transition-metal-molecular sandwich nanowires as magnetic on/off switch. <i>Applied Physics Letters</i> , 2011 , 99, 053121	3.4	17
214	Toward a molecular theory of vapor-phase nucleation. V. Self-consistency in the decoupled dimer limit. <i>Journal of Chemical Physics</i> , 1997 , 107, 1242-1246	3.9	17
213	Molecular dynamics simulation of supersaturated vapor nucleation in slit pore. II. Thermostatted atomic-wall model. <i>Journal of Chemical Physics</i> , 2001 , 114, 9578-9584	3.9	17
212	Effects of external electric field on the interfacial properties of weakly dipolar fluid. <i>Journal of Chemical Physics</i> , 2001 , 114, 504	3.9	17
211	Effect of carrier-gas pressure on barrier to nucleation: Monte Carlo simulation of water/nitrogen system. <i>Journal of Chemical Physics</i> , 2001 , 114, 2681-2686	3.9	17
210	Can thin disk-like ice clusters be more stable than compact droplet-like ice clusters?. <i>Chemical Physics Letters</i> , 1999 , 304, 378-384	2.5	17
209	Probing the Structural Evolution of GoldAluminum Bimetallic Clusters (Au2AlnIn = 311) Using Photoelectron Spectroscopy and Theoretical Calculations. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 18234-18243	3.8	17
208	Unexpected quenching effect on new particle formation from the atmospheric reaction of methanol with SO. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019, 116, 24966-24971	11.5	17

207	Insights into High Conductivity of the Two-Dimensional Iodine-Oxidized sp-c-COF. <i>ACS Applied Materials & District Amount of the Materials & District Amount of the Two-Dimensional Iodine-Oxidized sp-c-COF. ACS Applied Materials & District Amount of the Two-Dimensional Iodine-Oxidized sp-c-COF. <i>ACS Applied Materials & District Amount of the Two-Dimensional Iodine-Oxidized sp-c-COF. ACS Applied Materials & District Amount of the Two-Dimensional Iodine-Oxidized sp-c-COF. ACS Applied Materials & District Amount of the Two-Dimensional Iodine-Oxidized sp-c-COF. ACS Applied Materials & District Amount of the Two-Dimensional Iodine-Oxidized sp-c-COF. ACS Applied Materials & District Amount of the Two-Dimensional Iodine-Oxidized sp-c-COF. ACS Applied Materials & District Amount of the Two-Dimensional Iodine-Oxidized sp-c-COF. ACS Applied Materials & District Amount of the Two-Dimensional Iodine-Oxidized sp-c-COF. ACS Applied Materials & District Amount of the Two-Dimensional Iodine-Oxidized sp-c-COF. ACS Applied Materials & District Amount of the Two-Dimensional Iodine Io</i></i>	9.5	17
206	Reconciling the Debate on the Existence of Pentazole HN in the Pentazolate Salt of (N)(HO)(NH)Cl. <i>Journal of the American Chemical Society</i> , 2019 , 141, 2984-2989	16.4	16
205	AB-stacked square-like bilayer ice in graphene nanocapillaries. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 22039-46	3.6	16
204	Medium-sized Au40(SR)24 and Au52(SR)32 nanoclusters with distinct gold-kernel structures and spectroscopic features. <i>Nanoscale</i> , 2016 , 8, 1299-304	7.7	16
203	Dense monolayer films of atomically precise graphene nanoribbons on metallic substrates enabled by direct contact transfer of molecular precursors. <i>Nanoscale</i> , 2017 , 9, 18835-18844	7.7	16
202	Understanding molecular motor walking along a microtubule: a themosensitive asymmetric Brownian motor driven by bubble formation. <i>Journal of the American Chemical Society</i> , 2013 , 135, 8616-	·24.4	16
201	Self-assembled nanolayers of conjugated silane with pi-pi interlocking. ACS Nano, 2010, 4, 3773-80	16.7	16
200	Molecular dynamics simulations of urea-water binary droplets on flat and pillared hydrophobic surfaces. <i>Faraday Discussions</i> , 2010 , 146, 185-93; discussion 195-215, 395-403	3.6	16
199	Theoretical and experimental characterization of structures of MnAu nanoclusters in the size range of 1-3 nm. <i>ACS Nano</i> , 2011 , 5, 9966-76	16.7	16
198	The melting temperature of bulk silicon from ab initio molecular dynamics simulations. <i>Chemical Physics Letters</i> , 2009 , 481, 88-90	2.5	16
197	Search for lowest-energy structure of Zintl dianion Si(12)(2-), Ge(12)(2-), and Sn(12)(2-). <i>Journal of Chemical Physics</i> , 2008 , 128, 154326	3.9	16
196	M4 @Si28 (M=Al,Ga): metal-encapsulated tetrahedral silicon fullerene. <i>Journal of Chemical Physics</i> , 2005 , 123, 204325	3.9	16
195	Influence of atmospheric conditions on sulfuric acid-dimethylamine-ammonia-based new particle formation. <i>Chemosphere</i> , 2020 , 245, 125554	8.4	16
194	Unraveling nucleation pathway in methane clathrate formation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 24701-24708	11.5	16
193	PbTiO3 as Electron-Selective Layer for High-Efficiency Perovskite Solar Cells: Enhanced Electron Extraction via Tunable Ferroelectric Polarization. <i>Advanced Functional Materials</i> , 2019 , 29, 1806427	15.6	16
192	PtSe Monolayer: A Highly Efficient Electrocatalyst toward Hydrogen and Oxygen Electrode Reactions. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 13896-13903	9.5	15
191	Formation of aqueous-phase sulfate during the haze period in China: Kinetics and atmospheric implications. <i>Atmospheric Environment</i> , 2018 , 177, 93-99	5.3	15
190	Formation of CO2 Hydrates within Single-Walled Carbon Nanotubes at Ambient Pressure: CO2 Capture and Selective Separation of a CO2/H2 Mixture in Water. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 7951-7958	3.8	15

189	Thin-Film Transformation of NH4PbI3 to CH3NH3PbI3 Perovskite: A Methylamine-Induced Conversion⊞ealing Process. <i>Angewandte Chemie</i> , 2016 , 128, 14943-14947	3.6	15
188	Structural evolution and magnetic properties of anionic clusters CrGe (n = 3-14): photoelectron spectroscopy and density functional theory computation. <i>Journal of Physics Condensed Matter</i> , 2018 , 30, 335501	1.8	15
187	Ab initio study of structural, electronic, and magnetic properties of V(n)(C(60))(m) complexes. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 5406-13	2.8	15
186	Water transport through subnanopores in the ultimate size limit: Mechanism from molecular dynamics. <i>Nano Research</i> , 2019 , 12, 587-592	10	15
185	Mechanistic insights into tunable luminescence and persistent luminescence of the full-color-emitting BCNO phosphors. <i>Carbon</i> , 2017 , 122, 176-184	10.4	14
184	Au(臣)(0e) elementary block: new insights into ligated gold clusters with 臣ulfido motifs. <i>Nanoscale</i> , 2017 , 9, 8990-8996	7.7	14
183	Facile and Versatile Functionalization of Two-Dimensional Carbon Nitrides by Design: Magnetism/Multiferroicity, Valleytronics, and Photovoltaics. <i>Advanced Functional Materials</i> , 2019 , 29, 1905752	15.6	14
182	Quantitative Prediction of Aggregation-Induced Emission: A Full Quantum Mechanical Approach to the Optical Spectra. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11550-11555	16.4	14
181	CO Separation from H via Hydrate Formation in Single-Walled Carbon Nanotubes. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 4911-4915	6.4	14
180	Persistent Luminescence Hole-Type Materials by Design: Transition-Metal-Doped Carbon Allotrope and Carbides. <i>ACS Applied Materials & Design: Transition-Metal-Doped Carbon Allotrope and Carbides.</i>	9.5	14
179	Carbon nanotube and boron nitride nanotube hosted C60N nanopeapods. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 4518	7.1	14
178	Resonant photoemission observations and DFT study of s-d hybridization in catalytically active gold clusters on ceria nanorods. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 6936-9	16.4	14
177	Scanning Motions of an Atomic Force Microscope Tip in Water. <i>Physical Review Letters</i> , 1997 , 79, 853-85	5 6 7.4	14
176	Structure and thermophysical properties of single-wall Si nanotubes. <i>Physica B: Condensed Matter</i> , 2008 , 403, 2021-2028	2.8	14
175	Rutile TiO(011)-2	9.5	14
174	Room temperature electrofreezing of water yields a missing dense ice phase in the phase diagram. <i>Nature Communications</i> , 2019 , 10, 1925	17.4	13
173	Hydration, Solvation, and Isomerization of Methylglyoxal at the Air/Water Interface: New Mechanistic Pathways. <i>Journal of the American Chemical Society</i> , 2020 , 142, 5574-5582	16.4	13
172	Structural Evolution of Gold-Doped Bismuth Clusters AuBin \mathbb{I} n = 48). <i>Journal of Physical Chemistry C</i> , 2018 , 122, 6947-6954	3.8	13

171	Formation of bilayer clathrate hydrates. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 5547-5555	13	13
170	COMPUTER SIMULATION OF LIQUIDNAPOR INTERFACIAL TENSION: LENNARD-JONES FLUID AND WATER REVISITED. <i>Journal of Theoretical and Computational Chemistry</i> , 2009 , 08, 733-763	1.8	13
169	Molecularly intercalated nanoflakes: a supramolecular composite for strong energy absorption. <i>Advanced Materials</i> , 2010 , 22, 4457-61	24	13
168	Analysis of the gas states at a liquid/solid interface based on interactions at the microscopic level. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 9325-9	3.4	13
167	Effects of line defects on the electronic properties of ZnO nanoribbons and sheets. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 3121-3129	7.1	12
166	Au: The Smallest Gold Cluster with the High-Symmetry Icosahedral Core Au. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 1820-1827	6.4	12
165	Covalent nitrophenyl diazonium functionalized silicene for spintronics: a first-principles study. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 17957-61	3.6	12
164	Thermal transport in phosphorene and phosphorene-based materials: A review on numerical studies. <i>Chinese Physics B</i> , 2018 , 27, 036501	1.2	12
163	Theoretical studies on tunable electronic structures and potential applications of two-dimensional arsenene-based materials. <i>Wiley Interdisciplinary Reviews: Computational Molecular Science</i> , 2019 , 9, e13	3 <i>₹7</i> 9	12
162	Excitations of Precursor Molecules by Different Laser Powers in Laser-Assisted Growth of Diamond Films. <i>Crystal Growth and Design</i> , 2010 , 10, 4928-4933	3.5	12
161	Monte Carlo simulation of the solid to superliquid phase transition of Langmuir monolayers. II. Characteristics of phase transition. <i>Journal of Chemical Physics</i> , 1997 , 106, 1961-1966	3.9	12
160	Basis set effects on the intermolecular interaction of the CF4©F4 system. <i>Computational and Theoretical Chemistry</i> , 2000 , 503, 213-220		12
159	Use of Ion Exchange To Regulate the Heterogeneous Ice Nucleation Efficiency of Mica. <i>Journal of the American Chemical Society</i> , 2020 , 142, 17956-17965	16.4	12
158	PCl: A Unique Post-Phosphorene 2D Material with Superior Properties against Oxidation. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 6568-6575	6.4	12
157	Control of crystallographic orientation in diamond synthesis through laser resonant vibrational excitation of precursor molecules. <i>Scientific Reports</i> , 2014 , 4, 4581	4.9	11
156	Influence of Structural Fluctuations, Proton Transfer, and Electric Field on Polarization Switching of Supported Two-Dimensional Hydrogen-Bonded Oxocarbon Monolayers. <i>Chemistry of Materials</i> , 2015 , 27, 4839-4847	9.6	11
155	Co-mixing hydrogen and methane may double the energy storage capacity. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 8916-8922	13	11
154	Carbon fragments as highly active metal-free catalysts for the oxygen reduction reaction: a mechanistic study. <i>Nanoscale</i> , 2019 , 11, 19422-19428	7.7	11

153	Interaction between O2 and neutral/charged Au (n= 1B) clusters: A comparative study between density-functional theory and coupled cluster calculations. <i>Chemical Physics Letters</i> , 2014 , 592, 127-131	2.5	11
152	Phase diagrams of confined solutions of dimyristoylphosphatidylcholine (DMPC) lipid and cholesterol in nanotubes. <i>Microfluidics and Nanofluidics</i> , 2013 , 14, 995-1010	2.8	11
151	Cooperativity effects in cyclic trifluoromethanol trimer: an ab initio study. <i>Computational and Theoretical Chemistry</i> , 1998 , 431, 119-126		11
150	Gas hydrates in confined space of nanoporous materials: new frontier in gas storage technology. <i>Nanoscale</i> , 2021 , 13, 7447-7470	7.7	11
149	An ultralow-density porous ice with the largest internal cavity identified in the water phase diagram. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 126	s 8 4-12	6 9 9
148	Rational design of one-dimensional hybrid organicIhorganic perovskites with room-temperature ferroelectricity and strong piezoelectricity. <i>Materials Horizons</i> , 2019 , 6, 1463-1473	14.4	10
147	Phase behaviors of deeply supercooled bilayer water unseen in bulk water. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 4839-4844	11.5	10
146	Edge decorated SiC nanoribbons with metal: Coexistence of planar tetracoordinate carbon and silicon. <i>Chemical Physics Letters</i> , 2013 , 580, 78-81	2.5	10
145	Freezing point and solid-liquid interfacial free energy of Stockmayer dipolar fluids: a molecular dynamics simulation study. <i>Journal of Chemical Physics</i> , 2013 , 139, 114705	3.9	10
144	New phases of 3d-transition metalderium binary compounds: an extensive structural search. <i>RSC Advances</i> , 2017 , 7, 40486-40498	3.7	10
143	Reply to "Comment on 'two-dimensional boron monolayer sheets'". ACS Nano, 2013, 7, 880-1	16.7	10
142	Reexamine structures and relative stability of medium-sized silicon clusters: Low-lying endohedral fullerene-like clusters Si30Bi38. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2009 , 373, 3757-3760	2.3	10
141	Vapour - liquid equilibria of binary mixtures containing Stockmayer molecules. <i>Journal of Physics Condensed Matter</i> , 1997 , 9, 3349-3360	1.8	10
140	Vapor-liquid equilibria for pure substances by Gibbs ensemble simulation of Stockmayer potential molecules. <i>Fluid Phase Equilibria</i> , 1997 , 137, 87-98	2.5	10
139	Quantum confinement of crystalline silicon nanotubes with nonuniform wall thickness: Implication to modulation doping. <i>Applied Physics Letters</i> , 2007 , 91, 103107	3.4	10
138	Direct synthesis of bifunctional nanorods from a ColdenineMoO3 hybrid for overall water splitting. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 546-554	7.8	10
137	Computational Prediction of Novel Ice Phases: A Perspective. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 7449-7461	6.4	10
136	Two-dimensional MgXSe (X = Al, Ga) monolayers with tunable electronic properties for optoelectronic and photocatalytic applications. <i>Nanoscale</i> , 2019 , 11, 19806-19813	7.7	10

135	Interaction between Iron and Graphene Nanocavity: Formation of Iron Membranes, Iron Clusters, or Iron Carbides. <i>ACS Applied Materials & Discrete States</i> , 2017, 9, 12100-12108	9.5	9
134	Electronic and transport properties of porous graphene sheets and nanoribbons: benzo-CMPs and BN codoped derivatives. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 9637-9649	7.1	9
133	Anatase (101) Reconstructed Surface with Novel Functionalities: Desired Bandgap for Visible Light Absorption and High Chemical Reactivity. <i>Advanced Functional Materials</i> , 2018 , 28, 1705529	15.6	9
132	Photovoltaic Diode Effect Induced by Positive Bias Poling of Organic Layer-Mediated Interface in Perovskite Heterostructure HC(NH2)2PbI3/TiO2. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600267	4.6	9
131	Monolayered semiconducting GeAsSe and SnSbTe with ultrahigh hole mobility. <i>Frontiers of Physics</i> , 2018 , 13, 1	3.7	9
130	Diisopropylammonium Bromide Based Two-Dimensional Ferroelectric Monolayer Molecular Crystal with Large In-Plane Spontaneous Polarization. <i>Journal of the American Chemical Society</i> , 2019 , 141, 1452	2 ⁻¹⁶ 456	9
129	Two-dimensional crystallization of hexagonal bilayer with Moir[patterns. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 4363-9	3.4	9
128	Homogeneous nanocables from double-walled boron-nitride nanotubes using first-principles calculations. <i>Physical Review B</i> , 2010 , 82,	3.3	9
127	Density-Functional Theory Studies of Step-Kinked Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 4235-4239	3.8	9
126	LiquidBolid phase transitions of Lennard-Jones particles confined to slit pores: towards the construction of temperatureBressure-slit width phase diagram. <i>Molecular Simulation</i> , 2012 , 38, 373-377	2	9
125	Motif Transition in Growth Patterns of Small to Medium-Sized Silicon Clusters. <i>Angewandte Chemie</i> , 2005 , 117, 1515-1518	3.6	9
124	The Boundary Condition in the Gibbs Ensemble Simulation of a Stockmayer Fluid under an Applied Field. <i>Molecular Simulation</i> , 1999 , 23, 95-107	2	9
123	Effects of solute size on the local solvent density and solute solubility in infinitely dilute supercritical solutions. <i>Fluid Phase Equilibria</i> , 1996 , 116, 296-303	2.5	9
122	Modulation of the Double-Helical Cores: A New Strategy for Structural Predictions of Thiolate-Protected Gold Nanoclusters. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 536-540	6.4	9
121	Electronic and transport properties of carbon and boron-nitride ferrocene nanopeapods. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 10017-10030	7.1	8
120	Supramolecular Nanolayer Reconfiguration after Molecular Intercalation. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 10351-10356	3.8	8
119	Effects of Radical Site Location and Surface Doping on the Radical Chain-reaction on HBi(100)-(2 [] 1): A Density Functional Theory Study. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 16078-16086	3.8	8
118	Bulk and interfacial properties of quadrupolar fluids. <i>Journal of Chemical Physics</i> , 2002 , 117, 3982-3991	3.9	8

117	Understanding the origin of phase segregation of nano-crystalline in a Be(x)Zn(1-x)O random alloy: a novel phase of Be(1/3)Zn(2/3)O. <i>Nanoscale</i> , 2015 , 7, 9852-8	7.7	7
116	Two-Dimensional AuMX (M = Al, Ga, In; X = S, Se) Monolayers Featuring Intracrystalline Aurophilic Interactions with Novel Electronic and Optical Properties. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 16739-16746	9.5	7
115	Mechanistic study of pressure and temperature dependent structural changes in reactive formation of silicon carbonate. <i>RSC Advances</i> , 2016 , 6, 26650-26657	3.7	7
114	Electronic structure engineering in chemically modified ultrathin ZnO nanofilms via a built-in heterointerface. <i>RSC Advances</i> , 2014 , 4, 18718-18723	3.7	7
113	The electronic and transport properties of (VBz)n@CNT and (VBz)n@BNNT nanocables. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 4039-4049	7.1	7
112	Silicon-Containing Multidecker Organometallic Complexes and Nanowires: A Density Functional Theory Study. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 151-156	6.4	7
111	Metal-organic frameworks capable of healing at low temperatures. Advanced Materials, 2013, 25, 6106-	1214	7
110	Solvent-induced interactions between hydrophobic and hydrophilic polyatomic sheets in water and hypothetical nonpolar water. <i>Journal of Chemical Physics</i> , 1997 , 106, 9781-9792	3.9	7
109	Hybrid atomistic-coarse-grained treatment of thin-film lubrication. I. <i>Journal of Chemical Physics</i> , 2004 , 120, 6744-50	3.9	7
108	Computer simulation of waterize transition in hydrophobic nanopores. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2001 , 292, 87-101	3.3	7
107	Monte Carlo simulation of vaporliquid binodal of water. <i>Journal of Chemical Physics</i> , 2002 , 117, 9518-95	19 9	7
106	Can the Nan der Waals loopNanish?. <i>Chemical Physics Letters</i> , 1994 , 231, 401-406	2.5	7
105	Atomically Resolved Electrically Active Intragrain Interfaces in Perovskite Semiconductors <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	7
104	Turning a Superhydrophilic Surface Weakly Hydrophilic: Topological Wetting States. <i>Journal of the American Chemical Society</i> , 2020 , 142, 18491-18502	16.4	7
103	Large magnetic anisotropy in chemically engineered iridium dimer. <i>Communications Physics</i> , 2018 , 1,	5.4	7
102	Two-Dimensional IV-V Monolayers with Highly Anisotropic Carrier Mobility and Electric Transport Properties. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 1058-1065	6.4	7
101	New Insights into the Stability of Anhydrous 2-Imidazolium Fluoride and its High Dissolution Capability toward a Strongly Hydrogen-Bonded Compound. <i>Journal of the American Chemical Society</i> , 2020 , 142, 10314-10318	16.4	6
100	PtCoNi Alloy Nanoclusters for Synergistic Catalytic Oxygen Reduction Reaction. <i>ACS Applied Nano Materials</i> , 2020 , 3, 2536-2544	5.6	6

(2010-2013)

99	Fundamental measure density functional theory study of liquid-vapor interface of dipolar and quadrupolar fluids. <i>Journal of Chemical Physics</i> , 2013 , 139, 134502	3.9	6
98	Unraveling Crystalline Structure of High-Pressure Phase of Silicon Carbonate. <i>Physical Review X</i> , 2014 , 4,	9.1	6
97	Static Frictional Forces at Crystalline Interfaces. Journal of Physical Chemistry B, 1997, 101, 4992-4997	3.4	6
96	The effect of a uniform electric field on homogeneous vaporliquid nucleation in a dipolar fluid. I. Stockmayer fluid. <i>Journal of Chemical Physics</i> , 1998 , 109, 8435-8441	3.9	6
95	Contribution of the center-of-mass fluctuation of a liquid cluster to the free energy: A Monte Carlo simulation study. <i>Journal of Chemical Physics</i> , 1998 , 108, 4683-4684	3.9	6
94	The effective-medium approximation for the thermoelectric power of polycrystals: application to a model for La2-xMxCuO4. <i>Journal of Physics C: Solid State Physics</i> , 1987 , 20, L907-L910		6
93	Towards complete assignment of the infrared spectrum of the protonated water cluster H(HO). <i>Nature Communications</i> , 2021 , 12, 6141	17.4	6
92	Chiral Au(SR): a new ligand-binding strategy for structural prediction of thiolate-protected gold nanocluster. <i>Chemical Communications</i> , 2020 , 56, 2995-2998	5.8	6
91	Molecular Design of Three-Dimensional Metal-Free A(NH)X Perovskites for Photovoltaic Applications. <i>Jacs Au</i> , 2021 , 1, 475-483		6
90	Structural, electronic and mechanical properties of sp-hybridized BN phases. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 9923-9933	3.6	5
89	Tuning electronic structure of monolayer InP in contact with graphene or Ni: effect of a buffer layer and intrinsic In and P-vacancy. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 1285-1293	3.6	5
88	Bi(Sb)NCa3: Expansion of Perovskite Photovoltaics into All-Inorganic Anti-Perovskite Materials. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 6363-6369	3.8	5
87	Molecular dynamics simulation of heterogeneous nucleation on nanotubes. <i>RSC Advances</i> , 2015 , 5, 409	5 3 . -/ 409	963
86	The freezing tendency towards 4-coordinated amorphous networks causes an increase in the heat capacity of supercooled Stillinger Weber silicon. <i>RSC Advances</i> , 2015 , 5, 44679-44686	3.7	5
85	Abnormal phase transition between two-dimensional high-density liquid crystal and low-density crystalline solid phases. <i>Nature Communications</i> , 2018 , 9, 198	17.4	5
84	Monopolar Magnetic MOF-74 with Hybrid Node Ni E e. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 26908	-26914	5
83	Correspondence: Reply to 'On the bonding in ligand-protected gold clusters'. <i>Nature Communications</i> , 2017 , 8, 1351	17.4	5
82	Tunable magnetism on Si(111)[[2]]) via chemisorption of graphene nanoribbons. <i>Physical Review B</i> , 2010 , 82,	3.3	5

81	Covalent reinforcement of hydrogen-bonded discs into stably folded helical structures. <i>Organic Letters</i> , 2011 , 13, 4008-11	6.2	5
80	Coarse-grained free-energy-functional treatment of quasistatic multiscale processes in heterogeneous materials. <i>Journal of Chemical Physics</i> , 2005 , 123, 164109	3.9	5
79	Bubble Nucleation in Confined Liquids: Molecular Dynamics Study. <i>Progress of Theoretical Physics Supplement</i> , 2000 , 138, 732-733		5
78	Imaging point defects in a liquid environment: A model AFM study. <i>Physical Review B</i> , 1999 , 60, 14328-1	43333	5
77	Rich topologies of monolayer ices via unconventional electrowetting. <i>Nanoscale Horizons</i> , 2020 , 5, 514-	522 .8	5
76	Exploration of Formation and Size-Evolution Pathways of Thiolate-Gold Nanoclusters in the CO-Directed [Au (SR)] Synthesis. <i>Small</i> , 2021 , 17, e2000627	11	5
75	Ring Model for Understanding How Interfacial Interaction Dictates the Structures of Protection Motifs and Gold Cores in Thiolate-Protected Gold Nanoclusters. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 3006-3013	6.4	5
74	First-Principles Molecular Dynamics Simulations of the Spontaneous Freezing Transition of 2D Water in a Nanoslit. <i>Journal of the American Chemical Society</i> , 2021 , 143, 8177-8183	16.4	5
73	Two-dimensional dry ices with rich polymorphic and polyamorphic phase behavior. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 10263-10268	11.5	5
72	Determination of CO Adsorption Sites on Gold Clusters Au (n = 21-25): A Size Region That Bridges the Pyramidal and Core-Shell Structures. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 5430-5439	6.4	5
71	Reaction mechanism between small-sized Ce clusters and water molecules: an ab initio investigation on Ce + HO. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 4006-4014	3.6	4
70	Structure transition of Au18 from pyramidal to a hollow-cage during soft-landing onto a TiO2(110) surface. <i>Chemical Communications</i> , 2015 , 51, 9535-8	5.8	4
69	Heterogeneous Reactions of SO on Ice: An Overlooked Sink for SO Depletion. <i>Journal of the American Chemical Society</i> , 2020 , 142, 2150-2154	16.4	4
68	Role of vacancies to p-type semiconducting properties of SiGe nanowires. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 6536-6546	7.1	4
67	Controlling Cross Section of Carbon Nanotubes via Selective Hydrogenation. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 11753-11757	3.8	4
66	Effects of the co-solvent energy parameter and dipolar strength on solute residual chemical potential. <i>Fluid Phase Equilibria</i> , 1997 , 138, 61-68	2.5	4
65	Multiscale treatment of thin-film lubrication. <i>Molecular Simulation</i> , 2005 , 31, 811-815	2	4
64	Hybrid atomistic-coarse-grained treatment of thin-film lubrication. II. <i>Journal of Chemical Physics</i> , 2004 , 121, 8029-38	3.9	4

Role of hysteresis in the molecular picture of friction. Physical Chemistry Chemical Physics, 2001, 3, 1175-1.678 4 63 Nonlinear effects of physisorption on static friction. Journal of Chemical Physics, 2000, 113, 11293-11296, 9 62 Calculation of the surface tension of liquid metals using a one-component-plasma reference 61 4 system. Journal of Physics F: Metal Physics, 1987, 17, 2345-2352 AgBiS2 as a low-cost and eco-friendly all-inorganic photovoltaic material: nanoscale 60 5.1 morphologyproperty relationship. Nanoscale Advances, 2020, 2, 770-776 Peroxo Species Formed in the Bulk of Silicate Cathodes. Angewandte Chemie - International Edition, 16.4 59 4 2021, 60, 10056-10063 Unravelling the Role of Topological Defects on Catalytic Unzipping of Single-Walled Carbon 58 6.4 Nanotubes by Single Transition Metal Atom. Journal of Physical Chemistry Letters, 2018, 9, 6801-6807 Two-dimensional monolayer salt nanostructures can spontaneously aggregate rather than dissolve 17.4 57 4 in dilute aqueous solutions. *Nature Communications*, **2021**, 12, 5602 Multiscale simulation on shearing transitions of thin-film lubrication with multi-layer molecules. 56 2.5 Chemical Physics Letters, 2017, 679, 6-14 Mechanistic Insight into the Reaction of Organic Acids with SO3 at the Air Water Interface. 3.6 3 55 Angewandte Chemie, **2019**, 131, 8439-8443 Reaction mechanism between small-sized Ce clusters and water molecules II: an ab initio 54 investigation on Ce (n = 1-3) + mHO (m = 2-6). Physical Chemistry Chemical Physics, 2019, 21, 8945-8955 Photodetectors: High-Gain and Low-Driving-Voltage Photodetectors Based on Organolead 24 3 53 Triiodide Perovskites (Adv. Mater. 11/2015). Advanced Materials, 2015, 27, 1967-1967 Quantitative Prediction of Aggregation-Induced Emission: A Full Quantum Mechanical Approach to 3.6 the Optical Spectra. Angewandte Chemie, 2020, 132, 11647-11652 A possible unaccounted source of atmospheric sulfate formation: amine-promoted hydrolysis and 51 9.4 3 non-radical oxidation of sulfur dioxide. Chemical Science, 2020, 11, 2093-2102 Domain Wall Conduction in Calcium-Modified Lead Titanate for Polarization Tunable Photovoltaic 6.1 50 Devices. Cell Reports Physical Science, 2020, 1, 100043 Surprising impact of remote groups on the folding--unfolding and dimer-chain equilibria of 5.8 49 3 bifunctional H-bonding unimers. Chemical Communications, 2016, 52, 3773-6 Homogenous Alloys of Formamidinium Lead Triiodide and Cesium Tin Triiodide for Efficient 48 3.6 Ideal-Bandgap Perovskite Solar Cells. Angewandte Chemie, 2017, 129, 12832-12836 Experimental and theoretical studies of hydroxyl-induced magnetism in TiO nanoclusters. 47 3 7.7 Nanoscale, 2012, 4, 7704-11 Understanding LiquidBolid-Like Behavior of Tetrahydrofuran Adlayers at Room Temperature between Graphene and Mica: A Born ppenheimer Molecular Dynamics Study. Journal of Physical 46 Chemistry C, 2013, 117, 21894-21900

45	Molecular Dynamics Simulations of Thermal Conductivity of Silicon Nanotubes. <i>Journal of Computational and Theoretical Nanoscience</i> , 2006 , 3, 824-829	0.3	3
44	Comment on Dual-Hard-Sphere Models for Liquid Semiconductors Si And Ge. <i>Physics and Chemistry of Liquids</i> , 1989 , 19, 69-72	1.5	3
43	Constructing Stable and Potentially High-Performance Hybrid Organic-Inorganic Perovskites with "Unstable" Cations. <i>Research</i> , 2020 , 2020, 1986576	7.8	3
42	Directional Proton Transfer in the Reaction of the Simplest Criegee Intermediate with Water Involving the Formation of Transient HO. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 3379-3386	6.4	3
41	How O-Binding Affects Structural Evolution of Medium Even-Sized Gold Clusters Au (= 20-34). Journal of Physical Chemistry Letters, 2021 , 12, 3560-3570	6.4	3
40	Resolving the HONO formation mechanism in the ionosphere via ab initio molecular dynamic simulations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 4629-33	11.5	3
39	Understanding Hygroscopic Nucleation of Sulfate Aerosols: Combination of Molecular Dynamics Simulation with Classical Nucleation Theory. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 1126-1132	6.4	3
38	Anisotropic Properties of Quasi-1D In4Se3: Mechanical Exfoliation, Electronic Transport, and Polarization-Dependent Photoresponse. <i>Advanced Functional Materials</i> ,2106459	15.6	3
37	Boron-nitride and aluminum-nitride "Pringles" and flapping motion. <i>Chemical Communications</i> , 2014 , 50, 7444-6	5.8	2
36	Molecular dynamics simulation of heterogeneous nucleation on nanorods 2013,		2
35	Unraveling Molecular Mechanism on Dilute Surfactant Solution Controlled Ice Recrystallization. <i>Langmuir</i> , 2020 , 36, 1691-1698	4	2
34	Communication: Interaction of BrO radical with the surface of water. <i>Journal of Chemical Physics</i> , 2016 , 145, 241102	3.9	2
33	Iron Clusters Embedded in Graphene Nanocavities: Heat-Induced Structural Evolution and Catalytic CII Bond Breaking. <i>ACS Applied Nano Materials</i> , 2019 , 2, 535-545	5.6	2
32	Criegee intermediate inside fullerene cage: Evidence for size-dependent reactivity. <i>Journal of Chemical Physics</i> , 2018 , 148, 244301	3.9	2
31	Embedded silicene nanostructures in partly-dehydrogenated polysilane. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 10401-10405	3.6	1
30	A New Class of Bifunctional Perovskites BaMX4 (M = Co, Ni, Fe, Mn; X = F, Cl, Br, I): An n-Type Semiconductor with Combined Multiferroic and Photovoltaic Properties. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 14303-14311	3.8	1
29	Method To Implement Interaction Surfaces with Virtual Companion Particles for Molecular Dynamics Simulations. <i>Journal of Chemical & Engineering Data</i> , 2019 , 64, 3693-3700	2.8	1
28	Hybrid nanobud-array structures (C24)n/MoS2 and (C24V)n/MoS2: two-dimensional half metallic and ferromagnetic materials. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 3373-3386	7.1	1

27	Perovskite Solar Cells: Stable Formamidinium-Based Perovskite Solar Cells via In Situ Grain Encapsulation (Adv. Energy Mater. 22/2018). <i>Advanced Energy Materials</i> , 2018 , 8, 1870101	21.8	1
26	Magnetism in bimetallic PtxNiN⊠ clusters via cross-atomic coupling. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 9293-9300	7.1	1
25	Graphene-Based Architecture and Assemblies 2013 , 153-182		1
24	Resonant Photoemission Observations and DFT Study of sa Hybridization in Catalytically Active Gold Clusters on Ceria Nanorods. <i>Angewandte Chemie</i> , 2013 , 125, 7074-7077	3.6	1
23	Tunable Bandgaps: Simulation Evidence of Hexagonal-to-Tetragonal ZnSe Structure Transition: A Monolayer Material with a Wide-Range Tunable Direct Bandgap (Adv. Sci. 12/2015). <i>Advanced Science</i> , 2015 , 2,	13.6	1
22	Efficient electron and hole doping in compositionally abrupt Si/Ge nanowires. <i>Nanoscale</i> , 2013 , 5, 3880-	8 7.7	1
21	Exohedral Silicon Fullerenes: Si60Pn60 and Si80Pn60 (Pn = P, As, Sb and Bi). <i>Journal of Cluster Science</i> , 2011 , 22, 343-354	3	1
20	Mechanical Properties of Nanostructured hard coating of ZrO2. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1224, 1		1
19	Study of hydrophillic interactions between polyatomic sheets in water. <i>Fluid Phase Equilibria</i> , 1998 , 144, 377-385	2.5	1
18	Density Functional Mean Field Theory of Crystal-Melt Interfaces. <i>Physics and Chemistry of Liquids</i> , 1989 , 20, 39-43	1.5	1
17	Large-Sized Au Core-Shell Clusters (= 61-66): Enduring Structure of the Icosahedral Au Core Journal of Physical Chemistry Letters, 2022 , 1389-1397	6.4	1
16	Multiturn Hollow Helices: Synthesis and Folding of Long Aromatic Oligoamides. <i>Organic Letters</i> , 2020 , 22, 6938-6942	6.2	1
15	Polysilane-Wrapped Carbon and Boron-Nitride Nanotubes: Effects of B or P Doping on Electron Transport. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 5741-5754	3.8	1
14	Structural and Electronic Properties of Binary Clusters SiGe (+ = 6-13). <i>Journal of Nanoscience and Nanotechnology</i> , 2019 , 19, 7879-7885	1.3	1
13	Mechanistic Study of the Aqueous Reaction of Organic Peroxides with HSO on the Surface of a Water Droplet. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20200-20203	16.4	1
12	Peroxo Species Formed in the Bulk of Silicate Cathodes. <i>Angewandte Chemie</i> , 2021 , 133, 10144-10151	3.6	О
11	Mechanistic Study of the Aqueous Reaction of Organic Peroxides with HSO3Ibn the Surface of a Water Droplet. <i>Angewandte Chemie</i> , 2021 , 133, 20362-20365	3.6	О
10	Formation of dimethyl carbonate direct esterification of CO with methanol on reduced or stoichiometric CeO(111) and (110) surfaces. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 16150-16156	3.6	O

9	Anomalous Phase Behaviors of Monolayer NaCl Aqueous Solutions Induced by Effective Coulombic Interactions within Angstrom-Scale Slits <i>Journal of Physical Chemistry Letters</i> , 2022 , 2704-2710	6.4	О
8	Van der Waals Magnetic Heterojunctions with Giant Zero-Bias Tunneling Magnetoresistance and Photo-Assisted Magnetic Memory. <i>Advanced Functional Materials</i> ,2200154	15.6	O
7	REktitelbild: Homogenous Alloys of Formamidinium Lead Triiodide and Cesium Tin Triiodide for Efficient Ideal-Bandgap Perovskite Solar Cells (Angew. Chem. 41/2017). <i>Angewandte Chemie</i> , 2017 , 129, 12966-12966	3.6	
6	Homogeneous connectivity of potential energy network in a solidlike state of water cluster. <i>Journal of Chemical Physics</i> , 2013 , 138, 244301	3.9	
5	MetalDrganic Frameworks: MetalDrganic Frameworks Capable of Healing at Low Temperatures (Adv. Mater. 42/2013). <i>Advanced Materials</i> , 2013 , 25, 6148-6148	24	
4	Efficient synthesis and conformational investigations of cis-pentacenediols. <i>Tetrahedron Letters</i> , 2010 , 51, 5732-5735	2	
3	Two-Dimensional GeC with Tunable Electronic and Carrier Transport Properties and a High Current ON/OFF Ratio. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 11488-11496	6.4	
2	Innentitelbild: Peroxo Species Formed in the Bulk of Silicate Cathodes (Angew. Chem. 18/2021). <i>Angewandte Chemie</i> , 2021 , 133, 9814-9814	3.6	

Multiple Wetting-Dewetting States of a Water Droplet on Dual-Scale Hierarchical Structured Surfaces. *Jacs Au*, **2021**, 1, 955-966