
Zhengliang Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9417637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pushing Lithium Cobalt Oxides to 4.7ÂV by Latticeâ€Matched Interfacial Engineering. Advanced Energy Materials, 2022, 12, .	19.5	77
2	In Situ Construction of a LiF-Enriched Interfacial Modification Layer for Stable All-Solid-State Batteries. ACS Applied Materials & Interfaces, 2022, 14, 29878-29885.	8.0	5
3	Highly reversible Li ₂ RuO ₃ cathodes in sulfide-based all solid-state lithium batteries. Energy and Environmental Science, 2022, 15, 3470-3482.	30.8	17
4	Modifying an ultrathin insulating layer to suppress lithium dendrite formation within garnet solid electrolytes. Journal of Materials Chemistry A, 2021, 9, 3576-3583.	10.3	36
5	Electrochemoâ€Mechanical Effects on Structural Integrity of Niâ€Rich Cathodes with Different Microstructures in All Solidâ€State Batteries. Advanced Energy Materials, 2021, 11, 2003583.	19.5	112
6	Exploring 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether as a high voltage electrolyte solvent for 5-V Li2CoPO4F cathode. Journal of Solid State Electrochemistry, 2021, 25, 1353-1360.	2.5	2
7	Interfacial compatibility issues in rechargeable solid-state lithium metal batteries: a review. Science China Chemistry, 2021, 64, 879-898.	8.2	28
8	Linking the Defects to the Formation and Growth of Li Dendrite in Allâ€Solidâ€State Batteries. Advanced Energy Materials, 2021, 11, 2102148.	19.5	61
9	N-doped rGO/C@Si composites using sustainable chitosan as the carbon source for lithium-ion batteries. Applied Surface Science, 2020, 501, 144136.	6.1	36
10	Li2S@NC composite enable high active material loading and high Li2S utilization for all-solid-state lithium sulfur batteries. Journal of Power Sources, 2020, 479, 228792.	7.8	21
11	Restraining the polarization increase of Ni-rich and low-Co cathodes upon cycling by Al-doping. Journal of Materials Chemistry A, 2020, 8, 6893-6901.	10.3	100
12	Graphene nanowalls conformally coated with amorphous/ nanocrystalline Si as high-performance binder-free nanocomposite anode for lithium-ion batteries. Journal of Power Sources, 2019, 437, 226909.	7.8	39
13	Poly(ethylene oxide)–Li ₁₀ SnP ₂ S ₁₂ Composite Polymer Electrolyte Enables High-Performance All-Solid-State Lithium Sulfur Battery. ACS Applied Materials & Interfaces, 2019, 11, 22745-22753.	8.0	108
14	In Situ Generated Li ₂ S–C Nanocomposite for High-Capacity and Long-Life All-Solid-State Lithium Sulfur Batteries with Ultrahigh Areal Mass Loading. Nano Letters, 2019, 19, 3280-3287.	9.1	98
15	Research Progress in Multielectron Reactions in Polyanionic Materials for Sodiumâ€lon Batteries. Small Methods, 2019, 3, 1800221.	8.6	54
16	Influence of Degree of Substitution of Carboxymethyl Cellulose on High Performance Silicon Anode in Lithium-Ion Batteries. Electrochemistry, 2019, 87, 94-99.	1.4	5
17	Rational Design of Si@SiO ₂ /C Composites Using Sustainable Cellulose as a Carbon Resource for Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 7946-7954.	8.0	107
18	Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-Type Solid-State Li Batteries. ACS Energy Letters, 2018, 3, 1212-1218.	17.4	321

#	Article	IF	CITATIONS
19	Enhanced Electrochemical Performance of High-Energy Lithium-Sulfur Batteries Using an Electrolyte with 1,1,2,2-Tetrafluoro-3-(1,1,2,2-tetrafluoroethoxy)propane. Journal of the Electrochemical Society, 2018, 165, A1915-A1919.	2.9	12
20	Exploring the working mechanism of Li ⁺ in O3-type NaLi _{0.1} Ni _{0.35} Mn _{0.55} O ₂ cathode materials for rechargeable Na-ion batteries. Journal of Materials Chemistry A, 2016, 4, 9054-9062.	10.3	92
21	Insights into the Effects of Zinc Doping on Structural Phase Transition of P2-Type Sodium Nickel Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 22227-22237.	8.0	177
22	Synthesis and Reaction Mechanism of Novel Fluorinated Carbon Fiber as a High-Voltage Cathode Material for Rechargeable Na Batteries. Chemistry of Materials, 2016, 28, 1026-1033.	6.7	53
23	Promoting long-term cycling performance of high-voltage Li ₂ CoPO ₄ F by the stabilization of electrode/electrolyte interface. Journal of Materials Chemistry A, 2014, 2, 1006-1013.	10.3	38
24	Oxygen Reduction Contributing to Charge Transfer during the First Discharge of the CeO ₂ –Bi ₂ Fe ₄ O ₉ –Li Battery: In Situ X-ray Diffraction and X-ray Absorption Near-Edge Structure Investigation. Journal of Physical Chemistry C, 2014, 118, 14711-14722.	3.1	13
25	Sol–gel synthesis of Li2CoPO4F/C nanocomposite as a high power cathode material for lithium ion batteries. Journal of Power Sources, 2012, 220, 122-129.	7.8	39
26	Nanostructured 0.8Li2FeSiO4/0.4Li2SiO3/C composite cathode material with enhanced electrochemical performance for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 12128.	6.7	64
27	Sol–gel synthesis and electrochemical properties of fluorophosphates Na2Fe1â^'xMnxPO4F/C (x = 0, 0.1,) Tj ET 21, 18630.	Qq1 1 0.7 6.7	84314 rgB 88
28	Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy and Environmental Science, 2011, 4, 3223.	30.8	463
29	The effects of sintering temperature and time on the structure and electrochemical performance of LiNi 0.8 Co 0.2 O 2 cathode materials derived from sol-gel method. Journal of Solid State Electrochemistry, 2003, 7, 456-462.	2.5	40