## **Zhengliang Gong**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9417637/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                 | IF                 | CITATIONS           |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
| 1  | Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy and<br>Environmental Science, 2011, 4, 3223.                                                                                                           | 30.8               | 463                 |
| 2  | Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-Type Solid-State Li<br>Batteries. ACS Energy Letters, 2018, 3, 1212-1218.                                                                                           | 17.4               | 321                 |
| 3  | Insights into the Effects of Zinc Doping on Structural Phase Transition of P2-Type Sodium Nickel<br>Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries. ACS Applied Materials &<br>Interfaces, 2016, 8, 22227-22237.                         | 8.0                | 177                 |
| 4  | Electrochemoâ€Mechanical Effects on Structural Integrity of Niâ€Rich Cathodes with Different<br>Microstructures in All Solidâ€State Batteries. Advanced Energy Materials, 2021, 11, 2003583.                                                            | 19.5               | 112                 |
| 5  | Poly(ethylene oxide)–Li <sub>10</sub> SnP <sub>2</sub> S <sub>12</sub> Composite Polymer Electrolyte<br>Enables High-Performance All-Solid-State Lithium Sulfur Battery. ACS Applied Materials &<br>Interfaces, 2019, 11, 22745-22753.                  | 8.0                | 108                 |
| 6  | Rational Design of Si@SiO <sub>2</sub> /C Composites Using Sustainable Cellulose as a Carbon<br>Resource for Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10,<br>7946-7954.                                               | 8.0                | 107                 |
| 7  | Restraining the polarization increase of Ni-rich and low-Co cathodes upon cycling by Al-doping.<br>Journal of Materials Chemistry A, 2020, 8, 6893-6901.                                                                                                | 10.3               | 100                 |
| 8  | In Situ Generated Li <sub>2</sub> S–C Nanocomposite for High-Capacity and Long-Life All-Solid-State<br>Lithium Sulfur Batteries with Ultrahigh Areal Mass Loading. Nano Letters, 2019, 19, 3280-3287.                                                   | 9.1                | 98                  |
| 9  | Exploring the working mechanism of Li <sup>+</sup> in O3-type<br>NaLi <sub>0.1</sub> Ni <sub>0.35</sub> Mn <sub>0.55</sub> O <sub>2</sub> cathode materials for<br>rechargeable Na-ion batteries. Journal of Materials Chemistry A, 2016, 4, 9054-9062. | 10.3               | 92                  |
| 10 | Sol–gel synthesis and electrochemical properties of fluorophosphates Na2Fe1â^'xMnxPO4F/C (x = 0, 0.1,) Tj E<br>21, 18630.                                                                                                                               | .TQq0 0 0 i<br>6.7 | rgBT /Overloc<br>88 |
| 11 | Pushing Lithium Cobalt Oxides to 4.7ÂV by Latticeâ€Matched Interfacial Engineering. Advanced Energy<br>Materials, 2022, 12, .                                                                                                                           | 19.5               | 77                  |
| 12 | Nanostructured 0.8Li2FeSiO4/0.4Li2SiO3/C composite cathode material with enhanced electrochemical performance for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 12128.                                                               | 6.7                | 64                  |
| 13 | Linking the Defects to the Formation and Growth of Li Dendrite in Allâ€Solidâ€State Batteries. Advanced<br>Energy Materials, 2021, 11, 2102148.                                                                                                         | 19.5               | 61                  |
| 14 | Research Progress in Multielectron Reactions in Polyanionic Materials for Sodiumâ€ <del>l</del> on Batteries.<br>Small Methods, 2019, 3, 1800221.                                                                                                       | 8.6                | 54                  |
| 15 | Synthesis and Reaction Mechanism of Novel Fluorinated Carbon Fiber as a High-Voltage Cathode<br>Material for Rechargeable Na Batteries. Chemistry of Materials, 2016, 28, 1026-1033.                                                                    | 6.7                | 53                  |
| 16 | The effects of sintering temperature and time on the structure and electrochemical performance of<br>LiNi 0.8 Co 0.2 O 2 cathode materials derived from sol-gel method. Journal of Solid State<br>Electrochemistry, 2003, 7, 456-462.                   | 2.5                | 40                  |
| 17 | Sol–gel synthesis of Li2CoPO4F/C nanocomposite as a high power cathode material for lithium ion<br>batteries. Journal of Power Sources, 2012, 220, 122-129.                                                                                             | 7.8                | 39                  |
| 18 | Graphene nanowalls conformally coated with amorphous/ nanocrystalline Si as high-performance<br>binder-free nanocomposite anode for lithium-ion batteries. Journal of Power Sources, 2019, 437,<br>226909.                                              | 7.8                | 39                  |

ZHENGLIANG GONG

| #  | Article                                                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Promoting long-term cycling performance of high-voltage Li <sub>2</sub> CoPO <sub>4</sub> F by the stabilization of electrode/electrolyte interface. Journal of Materials Chemistry A, 2014, 2, 1006-1013.                                                                                                          | 10.3 | 38        |
| 20 | N-doped rGO/C@Si composites using sustainable chitosan as the carbon source for lithium-ion batteries. Applied Surface Science, 2020, 501, 144136.                                                                                                                                                                  | 6.1  | 36        |
| 21 | Modifying an ultrathin insulating layer to suppress lithium dendrite formation within garnet solid electrolytes. Journal of Materials Chemistry A, 2021, 9, 3576-3583.                                                                                                                                              | 10.3 | 36        |
| 22 | Interfacial compatibility issues in rechargeable solid-state lithium metal batteries: a review. Science<br>China Chemistry, 2021, 64, 879-898.                                                                                                                                                                      | 8.2  | 28        |
| 23 | Li2S@NC composite enable high active material loading and high Li2S utilization for all-solid-state lithium sulfur batteries. Journal of Power Sources, 2020, 479, 228792.                                                                                                                                          | 7.8  | 21        |
| 24 | Highly reversible Li <sub>2</sub> RuO <sub>3</sub> cathodes in sulfide-based all solid-state lithium batteries. Energy and Environmental Science, 2022, 15, 3470-3482.                                                                                                                                              | 30.8 | 17        |
| 25 | Oxygen Reduction Contributing to Charge Transfer during the First Discharge of the<br>CeO <sub>2</sub> –Bi <sub>2</sub> Fe <sub>4</sub> O <sub>9</sub> –Li Battery: In Situ X-ray Diffraction<br>and X-ray Absorption Near-Edge Structure Investigation. Journal of Physical Chemistry C, 2014, 118,<br>14711-14722 | 3.1  | 13        |
| 26 | Enhanced Electrochemical Performance of High-Energy Lithium-Sulfur Batteries Using an Electrolyte with 1,1,2,2-Tetrafluoro-3-(1,1,2,2-tetrafluoroethoxy)propane. Journal of the Electrochemical Society, 2018, 165, A1915-A1919.                                                                                    | 2.9  | 12        |
| 27 | Influence of Degree of Substitution of Carboxymethyl Cellulose on High Performance Silicon Anode<br>in Lithium-Ion Batteries. Electrochemistry, 2019, 87, 94-99.                                                                                                                                                    | 1.4  | 5         |
| 28 | In Situ Construction of a LiF-Enriched Interfacial Modification Layer for Stable All-Solid-State Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 29878-29885.                                                                                                                                         | 8.0  | 5         |
| 29 | Exploring 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether as a high voltage electrolyte solvent for 5-V Li2CoPO4F cathode. Journal of Solid State Electrochemistry. 2021, 25, 1353-1360.                                                                                                                   | 2.5  | 2         |