
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/94175/publications.pdf Version: 2024-02-01

WANLE KANC

#	Article	IF	CITATIONS
1	Stability mechanism of W/O crude oil emulsion stabilized by polymer and surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 555-560.	2.3	163
2	Flocculation, coalescence and migration of dispersed phase droplets and oil–water separation in heavy oil emulsion. Journal of Petroleum Science and Engineering, 2012, 81, 177-181.	2.1	117
3	Demulsification performance, behavior and mechanism of different demulsifiers on the light crude oil emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 545, 197-204.	2.3	116
4	Mechanisms of imbibition enhanced oil recovery in low permeability reservoirs: Effect of IFT reduction and wettability alteration. Fuel, 2019, 244, 110-119.	3.4	114
5	Stability mechanism of O/W Pickering emulsions stabilized with regenerated cellulose. Carbohydrate Polymers, 2018, 181, 224-233.	5.1	110
6	Study of salt tolerance and temperature resistance of a hydrophobically modified polyacrylamide based novel functional polymer for EOR. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 514, 91-97.	2.3	106
7	Advances of spontaneous emulsification and its important applications in enhanced oil recovery process. Advances in Colloid and Interface Science, 2020, 277, 102119.	7.0	104
8	Shear resistance performance of low elastic polymer microspheres used for conformance control treatment. Journal of Industrial and Engineering Chemistry, 2019, 79, 295-306.	2.9	99
9	Development of smart viscoelastic surfactants and its applications in fracturing fluid: A review. Journal of Petroleum Science and Engineering, 2020, 190, 107107.	2.1	76
10	Progress of polymer gels for conformance control in oilfield. Advances in Colloid and Interface Science, 2021, 289, 102363.	7.0	72
11	Silica-based amphiphilic Janus nanofluid with improved interfacial properties for enhanced oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124162.	2.3	71
12	A review of wettability alteration using surfactants in carbonate reservoirs. Advances in Colloid and Interface Science, 2021, 294, 102477.	7.0	68
13	Research on matching mechanism between polymer microspheres with different storage modulus and pore throats in the reservoir. Powder Technology, 2017, 313, 191-200.	2.1	65
14	Study on the stabilization mechanism of crude oil emulsion with an amphiphilic polymer using the β-cyclodextrin inclusion method. RSC Advances, 2017, 7, 8156-8166.	1.7	62
15	A pH-responsive wormlike micellar system of a noncovalent interaction-based surfactant with a tunable molecular structure. Soft Matter, 2017, 13, 1182-1189.	1.2	61
16	A new approach to evaluate the particle growth and sedimentation of dispersed polymer microsphere profile control system based on multiple light scattering. Powder Technology, 2017, 315, 477-485.	2.1	61
17	Experimental research of high strength thermally stable organic composite polymer gel. Journal of Molecular Liquids, 2018, 263, 118-124.	2.3	57
18	Preparation of a micron-size silica-reinforced polymer microsphere and evaluation of its properties as a plugging agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 547, 8-18.	2.3	56

#	Article	IF	CITATIONS
19	The ultra-low interfacial tension behavior of the combined cationic/anionic-nonionic gemini surfactants system for chemical flooding. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554, 74-80.	2.3	55
20	Effects of surface modification Nano-SiO2 and its combination with surfactant on interfacial tension and emulsion stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 595, 124682.	2.3	55
21	Property evaluation of synthesized anionic-nonionic gemini surfactants for chemical enhanced oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 581, 123800.	2.3	53
22	Experimental study on a fine emulsion flooding system to enhance oil recovery for low permeability reservoirs. Journal of Petroleum Science and Engineering, 2018, 171, 974-981.	2.1	49
23	Stability, rheological property and oil-displacement mechanism of a dispersed low-elastic microsphere system for enhanced oil recovery. RSC Advances, 2017, 7, 8118-8130.	1.7	48
24	Experimental research on amphiphilic polymer/organic chromium gel for high salinity reservoirs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582, 123900.	2.3	48
25	Advances of microemulsion and its applications for improved oil recovery. Advances in Colloid and Interface Science, 2022, 299, 102527.	7.0	48
26	Rheological behavior and mechanism of pH-responsive wormlike micelle variations induced by isomers of phthalic acid. Soft Matter, 2018, 14, 4445-4452.	1.2	46
27	Spontaneous Emulsification via Once Bottom-Up Cycle for the Crude Oil in Low-Permeability Reservoirs. Energy & Fuels, 2018, 32, 3119-3126.	2.5	45
28	Effect of hydrophobic group content on the properties of betaine-type binary amphiphilic polymer. Journal of Molecular Liquids, 2020, 311, 113358.	2.3	45
29	Mechanism and Influencing Factors on the Initial Particle Size and Swelling Capability of Viscoelastic Microspheres. Journal of Dispersion Science and Technology, 2015, 36, 1673-1684.	1.3	43
30	Emulsification and stabilization mechanism of crude oil emulsion by surfactant synergistic amphiphilic polymer system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609, 125726.	2.3	43
31	pH-Responsive wormlike micelles based on microstructural transition in a C ₂₂ -tailed cationic surfactant–aromatic dibasic acid system. RSC Advances, 2017, 7, 37699-37705.	1.7	40
32	SiO2 nanoparticle-assisted low-concentration viscoelastic cationic surfactant fracturing fluid. Journal of Molecular Liquids, 2018, 266, 864-869.	2.3	39
33	Synergistic Collaboration between Regenerated Cellulose and Surfactant to Stabilize Oil/Water (O/W) Emulsions for Enhancing Oil Recovery. Energy & Fuels, 2019, 33, 81-88.	2.5	36
34	Characteristics of composite microspheres for in-depth profile control in oilfields and the effects of polymerizable silica nanoparticles. Powder Technology, 2020, 359, 205-215.	2.1	36
35	Ultra-low interfacial tension biobased and catanionic surfactants for low permeability reservoirs. Journal of Molecular Liquids, 2020, 309, 113099.	2.3	36
36	Preparation and solution performance for the amphiphilic polymers with different hydrophobic groups. Journal of Applied Polymer Science, 2017, 134, .	1.3	35

#	Article	IF	CITATIONS
37	Fabrication and Mechanism Study of the Fast Spontaneous Emulsification of Crude Oil with Anionic/Cationic Surfactants as an Enhanced Oil Recovery (EOR) Method for Low-Permeability Reservoirs. Energy & Fuels, 2019, 33, 8279-8288.	2.5	35
38	Study on the stability of heavy crude oil-in-water emulsions stabilized by two different hydrophobic amphiphilic polymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 572, 299-306.	2.3	35
39	Study of the solution behavior of β-cyclodextrin amphiphilic polymer inclusion complex and the stability of its O/W emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 453, 117-124.	2.3	34
40	Evaluation of rheological properties of a novel thermo-viscosifying functional polymer for enhanced oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 405-410.	2.3	34
41	The N-allyl substituted effect on wormlike micelles and salt tolerance of a C ₂₂ -tailed cationic surfactant. Soft Matter, 2017, 13, 7425-7432.	1.2	34
42	Stabilization mechanism of CO2 foam reinforced by regenerated cellulose. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 754-764.	2.3	34
43	Viscoelasticity and microstructural properties of zwitterionic surfactant induced by hydroxybenzoate salt for fracturing. Journal of Molecular Liquids, 2020, 301, 112485.	2.3	34
44	Synthesis and plugging behavior of fluorescent polymer microspheres as a kind of conformance control agent in reservoirs. RSC Advances, 2018, 8, 10478-10488.	1.7	32
45	A systematic research on spontaneous imbibition of surfactant solutions for low permeability sandstone reservoirs. Journal of Petroleum Science and Engineering, 2021, 206, 109003.	2.1	32
46	Study on salt thickening mechanism of the amphiphilic polymer with betaine zwitterionic group by β-cyclodextrin inclusion method. Colloid and Polymer Science, 2017, 295, 1887-1895.	1.0	31
47	Preparation and properties of an acid-resistant preformed particle gel for conformance control. Journal of Petroleum Science and Engineering, 2021, 197, 107964.	2.1	31
48	Study of nano-SiO2 reinforced CO2 foam for anti-gas channeling with a high temperature and high salinity reservoir. Journal of Industrial and Engineering Chemistry, 2021, 97, 506-514.	2.9	30
49	Study on rheological behavior and salt-thickening mechanism of a synthesized twin-tailed hydrophobically modified polyacrylamide. Journal of Molecular Liquids, 2019, 294, 111619.	2.3	29
50	Study on the association behavior of a hydrophobically modified polyacrylamide in aqueous solution based on host-guest inclusion. Journal of Molecular Liquids, 2019, 275, 544-553.	2.3	29
51	Advances of supramolecular interaction systems for improved oil recovery (IOR). Advances in Colloid and Interface Science, 2022, 301, 102617.	7.0	29
52	Influence mechanism of fluorescent monomer on the performance of polymer microspheres. Journal of Molecular Liquids, 2020, 308, 113081.	2.3	28
53	Experimental Study on Low Interfacial Tension Foam for Enhanced Oil Recovery in High-Temperature and High-Salinity Reservoirs. Energy & amp; Fuels, 2017, 31, 13416-13426.	2.5	27
54	Imbibition enhancing oil recovery mechanism of the two surfactants. Physics of Fluids, 2020, 32, .	1.6	27

#	Article	IF	CITATIONS
55	The rheological characteristics for the mixtures of cationic surfactant and anionic–nonionic surfactants: the role of ethylene oxide moieties. RSC Advances, 2017, 7, 13032-13040.	1.7	26
56	Salt effect on hydrophobically modified polyacrylamide-containing crude oil emulsions: stability and rheology study. Colloid and Polymer Science, 2018, 296, 515-527.	1.0	26
57	The advances of organic chromium based polymer gels and their application in improved oil recovery. Advances in Colloid and Interface Science, 2020, 282, 102214.	7.0	26
58	Application of α-amylase as a novel biodemulsifier for destabilizing amphiphilic polymer-flooding produced liquid treatment. Bioresource Technology, 2018, 259, 349-356.	4.8	25
59	Study on the effect of the organic acid structure on the rheological behavior and aggregate transformation of a pH-responsive wormlike micelle system. Soft Matter, 2019, 15, 3160-3167.	1.2	25
60	Conformance control mechanism of low elastic polymer microspheres in porous medium. Journal of Petroleum Science and Engineering, 2021, 196, 107708.	2.1	25
61	Controllable regulation of emulsion stability by a pH-responsive zwitterionic/anionic surfactant system. Fuel, 2022, 312, 122921.	3.4	25
62	Study on the influence of emulsification property of functional polymers on enhanced oil recovery and its mechanism. Journal of Petroleum Science and Engineering, 2020, 185, 106627.	2.1	24
63	Responsive wormlike micelle with pH-induced transition of hydrotrope based on dynamic covalent bond. Journal of Molecular Liquids, 2019, 286, 110935.	2.3	23
64	Study on the types and formation mechanisms of residual oil after two surfactant imbibition. Journal of Petroleum Science and Engineering, 2020, 195, 107904.	2.1	23
65	The effect of stepwise increasing of water injection rates on enhanced oil recovery after preformed particle gel treatment. Journal of Petroleum Science and Engineering, 2019, 182, 106239.	2.1	22
66	Study on the enhanced viscosity mechanism of the cyclodextrin polymer and betaine-type amphiphilic polymer inclusion complex. Journal of Molecular Liquids, 2019, 296, 111792.	2.3	22
67	Responsive morphology transition from micelles to vesicles based on dynamic covalent surfactants. Soft Matter, 2019, 15, 2703-2710.	1.2	22
68	Effects of cyclodextrin polymer on the gelation of amphiphilic polymer in inclusion complex. Journal of Molecular Liquids, 2020, 305, 112850.	2.3	22
69	Passive microrheology for measurement of gelation behavior of a kind of polymer gel P(AMâ€AAâ€AMPS). Journal of Applied Polymer Science, 2016, 133, .	1.3	20
70	Effect of 1-octanol on the stabilization of crude oil emulsions with hydrophobically modified polyacrylamide. Fuel, 2019, 256, 116007.	3.4	20
71	Study on the stabilization of emulsion formed by Two different inclusion Complexes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 594, 124651.	2.3	20
72	Study on the oil/water separation performance of a super-hydrophobic copper mesh under downhole conditions. Journal of Industrial and Engineering Chemistry, 2019, 72, 310-318.	2.9	19

#	Article	IF	CITATIONS
73	Organic Acid-Enhanced Viscoelastic Surfactant and Its Application in Fracturing Fluids. Energy & Fuels, 2021, 35, 3130-3139.	2.5	19
74	The relationships between rheological rules and cohesive energy of amphiphilic polymers with different hydrophobic groups. Journal of Polymer Research, 2015, 22, 1.	1.2	18
75	Interaction of Amphiphilic Polymers with Medium-Chain Fatty Alcohols to Enhance Rheological Performance and Mobility Control Ability. Energy & Fuels, 2019, 33, 6273-6282.	2.5	18
76	Regulation of polymerizable modification degree of nano-SiO2 and the effects on performance of composite microsphere for conformance control. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124100.	2.3	18
77	Synthesis, Aggregation Behavior and Emulsification Characteristic of a Multi-sticker Amphiphilic Polymer. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 302-309.	1.2	17
78	Study on the indigenous stabilization mechanism of light crude oil emulsions based on an in situ solvent-dissolution visualization method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 530, 155-163.	2.3	17
79	A responsive anionic wormlike micelle using pH-directed release of stored sodium based on polybasic acids. Soft Matter, 2018, 14, 5031-5038.	1.2	17
80	Viscoelastic Surfactants with High Salt Tolerance, Fastâ€Dissolving Property, and Ultralow Interfacial Tension for Chemical Flooding in Offshore Oilfields. Journal of Surfactants and Detergents, 2018, 21, 475-488.	1.0	17
81	pH-Responsive aggregates transition from spherical micelles to WLMs induced by hydrotropes based on the dynamic imine bond. Soft Matter, 2020, 16, 9705-9711.	1.2	17
82	Formation mechanism and location distribution of blockage during polymer flooding. Journal of Petroleum Science and Engineering, 2020, 194, 107503.	2.1	17
83	Research on synthesis and salt thickening behavior of a binary copolymer amphiphilic polymer. Journal of Petroleum Science and Engineering, 2021, 204, 108713.	2.1	17
84	Understanding the temperature–resistance performance of a borate cross-linked hydroxypropyl guar gum fracturing fluid based on a facile evaluation method. RSC Advances, 2017, 7, 53290-53300.	1.7	16
85	Construction and thickening mechanism of amphiphilic polymer supramolecular system based on polyacid. Journal of Molecular Liquids, 2019, 286, 110921.	2.3	16
86	Study on stabilization of emulsion formed by the supramolecular system of amphiphilic polymer and sodium polyacrylic acid. Journal of Molecular Liquids, 2020, 314, 113644.	2.3	16
87	Fabrication of a pH-responsive emulsifier for heavy oil recovery based on dynamic imine bond. Journal of Molecular Liquids, 2021, 332, 115916.	2.3	16
88	Research on association between multi-sticker amphiphilic polymer and water-soluble β-cyclodextrin polymer. Colloid and Polymer Science, 2014, 292, 895-903.	1.0	15
89	Rheology Properties and Plugging Performance of Fluorescent Polyacrylamide Microspheres in Fractures. Journal of Dispersion Science and Technology, 2016, 37, 345-351.	1.3	15
90	Study on the relationship between emulsion stability and droplet dynamics of a spontaneous emulsion for chemical enhanced oil recovery. Journal of Dispersion Science and Technology, 2018, 39, 1214-1222.	1.3	15

#	Article	IF	CITATIONS
91	Mechanism of silica nanoparticles' better-thickening effect on amphiphilic polymers in high salinity condition. Journal of Molecular Liquids, 2019, 277, 254-260.	2.3	15
92	Stabilization and performance of a novel viscoelastic N2 foam for enhanced oil recovery. Journal of Molecular Liquids, 2021, 337, 116609.	2.3	15
93	Rheological behavior of a wormlike micelle and an amphiphilic polymer combination for enhanced oil recovery. Physics of Fluids, 2020, 32, .	1.6	14
94	A dynamic scale location monitor method to predict oilfield blockage during water flooding. Journal of Petroleum Science and Engineering, 2020, 191, 107168.	2.1	14
95	The shear stability mechanism of cyclodextrin polymer and amphiphilic polymer inclusion gels. Journal of Molecular Liquids, 2021, 328, 115399.	2.3	14
96	On the effects of organic-acids isomers on temperature-responsiveness in wormlike micelles (WLMs) systems. Journal of Colloid and Interface Science, 2022, 608, 893-902.	5.0	14
97	Gel kinetic characteristics and creep behavior of polymer microspheres based on bulk gel. Journal of Dispersion Science and Technology, 2018, 39, 1808-1819.	1.3	13
98	Coalescence behavior of aqueous drops in water-in-oil emulsions under high-frequency pulsed AC fields. Journal of Industrial and Engineering Chemistry, 2021, 93, 415-422.	2.9	13
99	Emulsion stabilization of cyclodextrin polymer inclusion amphiphilic polymers with different hydrophobic chain. Journal of Molecular Liquids, 2021, 326, 115259.	2.3	13
100	Effect of aromatic acid on the rheological behaviors and microstructural mechanism of wormlike micelles in betaine surfactant. Journal of Molecular Liquids, 2021, 332, 115908.	2.3	13
101	Study on preparation and plugging effect of sawdust gel particle in fractured reservoir. Journal of Petroleum Science and Engineering, 2022, 212, 110358.	2.1	13
102	Enhanced oil recovery performance and mechanism of a wormlike micelles flooding system with zwitterionic-anionic surfactants. Journal of Molecular Liquids, 2022, 362, 119726.	2.3	13
103	An Advanced Material with Synergistic Viscoelasticity Enhancement of Hydrophobically Associated Waterâ€ S oluble Polymer and Surfactant. Macromolecular Rapid Communications, 2021, 42, e2100033.	2.0	12
104	Study on shearing resistance and the stability of O/W emulsion of the inclusive and hydrophobic association systems by activation energy methodology. Journal of Polymer Research, 2014, 21, 1.	1.2	11
105	Study on thermally-induced aggregates transformation and its mechanism in cetyltrimethyl ammonium bromide/sodium dodecyl sulfate surfactants mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 628-634.	2.3	11
106	A pH-responsive anionic wormlike micelle based on ion release effect of phosphate. Journal of Molecular Liquids, 2019, 286, 110946.	2.3	11
107	Spontaneous emulsification induced by a novel surfactant-polymer compound system and its application to enhance oil recovery. Journal of Molecular Liquids, 2021, 337, 116399.	2.3	11
108	Thickening behavior and synergistic mechanism of mixed system of two hydrophobically associating polymers. Journal of Dispersion Science and Technology, 2017, 38, 1196-1203.	1.3	10

#	Article	IF	CITATIONS
109	Stability of oil-in-water (O/W) nanoemulsions and its oil washing performance for enhanced oil recovery. Physics of Fluids, 2021, 33, .	1.6	10
110	A Novel Ultra-Low Interfacial Tension Nanofluid for Enhanced Oil Recovery in Super-Low Permeability Reservoirs. , 2018, , .		9
111	Effect of aging time on the viscoelastic properties of amphiphilic polymer-polyacid supramolecular solution. Physics of Fluids, 2020, 32, 023101.	1.6	9
112	Demulsifier performance at low temperature in a low permeability reservoir. Petroleum Science and Technology, 2016, 34, 1905-1912.	0.7	8
113	Polymer concentration detection method based on fluorescent polymer to evaluate its retention and percolation. Journal of Applied Polymer Science, 2019, 136, 47468.	1.3	8
114	Rheological behaviors and mechanism of pH-stimulus wormlike micelles variation induced by ortho-substituent types of benzoic acid. Journal of Molecular Liquids, 2019, 296, 112080.	2.3	8
115	Effects of sodium chloride on rheological behaviour of the gemini-like surfactants. Soft Matter, 2020, 16, 4024-4031.	1.2	8
116	Stability influence factors and mechanism of produced emulsion from CO2 flooding. Journal of Molecular Liquids, 2021, 333, 115974.	2.3	8
117	Rheology and microstructure of zwitterionic-anionic surfactant for enhanced oil recovery. Journal of Molecular Liquids, 2021, 341, 116910.	2.3	8
118	De-emulsification performance and mechanism of β-CD reverse demulsifier for amphiphilic polymer oil in water (O/W) emulsion. Journal of Molecular Liquids, 2021, 342, 117441.	2.3	8
119	Formation and phase transition of hydrogel in a zwitterionic/anionic surfactant system. RSC Advances, 2015, 5, 27623-27629.	1.7	7
120	The optimum synergistic effect of amphiphilic polymers and the stabilization mechanism of a crude oil emulsion. Petroleum Science and Technology, 2017, 35, 1180-1187.	0.7	7
121	A correlation between interfacial tension, emulsifying ability and oil displacement efficiency of ASP system for Daqing crude oil. Petroleum Science and Technology, 2018, 36, 2151-2156.	0.7	7
122	Blockage formation in water-flooding heavy oil reservoirs: The distribution rule and the scaling mechanism. Physics of Fluids, 2021, 33, .	1.6	7
123	Effects of surfactants on rheological properties of a dispersed viscoelastic microsphere. Journal of Applied Polymer Science, 2015, 132, .	1.3	6
124	A Low Elastic-microsphere/surfactant/polymer Combined Displacing Method after Polymer Flooding. , 2017, , .		6
125	A Novel Ultra-Low IFT Spontaneous Emulsification System for Enhanced Oil Recovery in Low Permeability Reservoirs. , 2018, , .		6
126	Effect of different molecular weight amphiphilic polymers on emulsifying behavior. Petroleum Science and Technology, 2018, 36, 1544-1551.	0.7	6

#	Article	IF	CITATIONS
127	Fluid state transition mechanism of a ternary component aqueous solution based on dynamic covalent bond. Journal of Molecular Liquids, 2021, 332, 115849.	2.3	6
128	Study on an emulsion-type blockage removal agent for heavy oil recovery enhanced by polymer. Journal of Industrial and Engineering Chemistry, 2020, 89, 273-279.	2.9	5
129	Water-soluble grafted sodium polyacrylate with low concentration: Synthesis and thermal properties. Journal of Molecular Liquids, 2022, 345, 117837.	2.3	5
130	Macro-Rheology and Micro-Rheological Study of Composite Polymer Gel at High Salinity and Acidic Conditions for CO2 Shut Off Treatment in Harsh Reservoirs for Improving Oil Recovery. , 2019, , .		4
131	Adsorption of SDBS and Its Effect on Rheology of Preformed Particle Gels. Journal of Dispersion Science and Technology, 2013, 34, 539-545.	1.3	2
132	Oil-Displacement Characteristics and EOR Mechanism of Amphiphilic Polymers With Two Molecular Weights. , 2018, , .		2
133	Alkyl chain length influence of hydrotrope on the pH responsiveness of surfactant aggregates based on dynamic imine bond. Journal of Molecular Liquids, 2022, 360, 119465.	2.3	2
134	The rheological behavior of sodium dodecyl sulfate/N-hexylamine aqueous solution at high concentrations. Journal of Molecular Liquids, 2021, 335, 116140.	2.3	1
135	Efficient Oil Removal of Polymer Flooding Produced Sewerage Using Super-Hydrophobic Mesh Filtration Method. Colloids and Interfaces, 2020, 4, 32.	0.9	0