List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9417442/publications.pdf Version: 2024-02-01

WENEL THENC

#	Article	IF	CITATIONS
1	Aminophenol-modified gold nanoparticles kill bacteria with minimal ototoxicity. Chemical Communications, 2022, , .	2.2	3
2	Screening on-chip fabricated nanoparticles for penetrating the blood–brain barrier. Nanoscale, 2022, 14, 3234-3241.	2.8	9
3	Editorial: Luminescent Nanomaterials in Translational Medicine. Frontiers in Chemistry, 2022, 10, 870300.	1.8	0
4	Dual Gold Nanoparticle/Chemiluminescent Immunoassay for Sensitive Detection of Multiple Analytes. Analytical Chemistry, 2022, 94, 6628-6634.	3.2	25
5	Aminophenol-Decorated Gold Nanoparticles for Curing Bacterial Infections. Nano Letters, 2022, 22, 3576-3582.	4.5	26
6	Modulating the antibacterial activity of gold nanoparticles by balancing their monodispersity and aggregation. Chemical Communications, 2022, 58, 7690-7693.	2.2	4
7	Breathable and Stretchable Dressings for Accelerating Healing of Infected Wounds. Advanced Healthcare Materials, 2022, 11, .	3.9	8
8	Oral Administration of Starting Materials for <i>In Vivo</i> Synthesis of Antibacterial Gold Nanoparticles for Curing Remote Infections. Nano Letters, 2021, 21, 1124-1131.	4.5	27
9	Evaluation of the <i>in vivo</i> behavior of antibacterial gold nanoparticles for potential biomedical applications. Journal of Materials Chemistry B, 2021, 9, 3025-3031.	2.9	7
10	Integrating a Concentration Gradient Generator and a Singleâ€Cell Trapper Array for Highâ€Throughput Screening the Bioeffects of Nanomaterials. Angewandte Chemie, 2021, 133, 12427-12430.	1.6	1
11	Integrating a Concentration Gradient Generator and a Singleâ€Cell Trapper Array for Highâ€Throughput Screening the Bioeffects of Nanomaterials. Angewandte Chemie - International Edition, 2021, 60, 12319-12322.	7.2	19
12	Small Molecule-Capped Gold Nanoclusters for Curing Skin Infections. ACS Applied Materials & Interfaces, 2021, 13, 35306-35314.	4.0	16
13	Simultaneous detection of CA15-3 and PGRMC1 on a microfluidic chip for early diagnosis of breast cancer. Journal of Liquid Chromatography and Related Technologies, 2021, 44, 519-528.	0.5	2
14	Micropatterned Coculture Platform for Screening Nerve-Related Anticancer Drugs. ACS Nano, 2021, 15, 637-649.	7.3	5
15	Fluorescent and Antibacterial Aminobenzeneboronic Acid (ABA)-Modified Gold Nanoclusters for Self-Monitoring Residual Dosage and Smart Wound Care. ACS Nano, 2021, 15, 17885-17894.	7.3	42
16	Gold Nanoclusters-Coated Orthodontic Devices Can Inhibit the Formation of <i>Streptococcus mutans</i> Biofilm. ACS Biomaterials Science and Engineering, 2020, 6, 1239-1246.	2.6	43
17	A Soft, Conductive External Stent Inhibits Intimal Hyperplasia in Vein Grafts by Electroporation and Mechanical Restriction. ACS Nano, 2020, 14, 16770-16780.	7.3	22
18	Near-Infrared Light-Activated Phototherapy by Gold Nanoclusters for Dispersing Biofilms. ACS Applied Materials & Interfaces, 2020, 12, 9041-9049.	4.0	95

#	Article	IF	CITATIONS
19	Bright Aggregation-Induced Emission Nanoparticles for Two-Photon Imaging and Localized Compound Therapy of Cancers. ACS Nano, 2020, 14, 16840-16853.	7.3	72
20	Activating the Antibacterial Effect of 4,6â€Diaminoâ€2â€pyrimidinethiolâ€Modified Gold Nanoparticles by Reducing their Sizes. Angewandte Chemie - International Edition, 2020, 59, 23471-23475.	7.2	44
21	Activating the Antibacterial Effect of 4,6â€Diaminoâ€2â€pyrimidinethiolâ€Modified Gold Nanoparticles by Reducing their Sizes. Angewandte Chemie, 2020, 132, 23677-23681.	1.6	9
22	CB1-Antibody Modified Liposomes for Targeted Modulation of Epileptiform Activities Synchronously Detected by Microelectrode Arrays. ACS Applied Materials & Interfaces, 2020, 12, 41148-41156.	4.0	15
23	Mercaptophenylboronic Acid-Activated Gold Nanoparticles as Nanoantibiotics against Multidrug-Resistant Bacteria. ACS Applied Materials & Interfaces, 2020, 12, 51148-51159.	4.0	38
24	Nanoliposome-encapsulated caged-GABA for modulating neural electrophysiological activity with simultaneous detection by microelectrode arrays. Nano Research, 2020, 13, 1756-1763.	5.8	11
25	The Density of Surface Coating Can Contribute to Different Antibacterial Activities of Gold Nanoparticles. Nano Letters, 2020, 20, 5036-5042.	4.5	90
26	Rapid Fabrication of Selfâ€Healing, Conductive, and Injectable Gel as Dressings for Healing Wounds in Stretchable Parts of the Body. Advanced Functional Materials, 2020, 30, 2002370.	7.8	146
27	Correction to: Gold Nanoclusters-Coated Orthodontic Devices Can Inhibit the Formation of Streptococcus mutans Biofilm. ACS Biomaterials Science and Engineering, 2020, 6, 1822-1822.	2.6	0
28	Small molecule-decorated gold nanoparticles for preparing antibiofilm fabrics. Nanoscale Advances, 2020, 2, 2293-2302.	2.2	28
29	Benzeneselenol-modified gold nanoclusters for cancer therapy. Chemical Communications, 2020, 56, 6664-6667.	2.2	16
30	Delivery of CRISPR/Cas9 by Novel Strategies for Gene Therapy. ChemBioChem, 2019, 20, 634-643.	1.3	48
31	Tripleâ€Targeting Delivery of CRISPR/Cas9 To Reduce the Risk of Cardiovascular Diseases. Angewandte Chemie, 2019, 131, 12534-12538.	1.6	13
32	Tripleâ€Targeting Delivery of CRISPR/Cas9 To Reduce the Risk of Cardiovascular Diseases. Angewandte Chemie - International Edition, 2019, 58, 12404-12408.	7.2	107
33	Construction of Dopamine-Releasing Gold Surfaces Mimicking Presynaptic Membrane by On-Chip Electrochemistry. Journal of the American Chemical Society, 2019, 141, 8816-8824.	6.6	15
34	Cell-Based Assays on Microfluidics for Drug Screening. ACS Sensors, 2019, 4, 1465-1475.	4.0	44
35	Thermoâ€triggered Release of CRISPRâ€Cas9 System by Lipidâ€Encapsulated Gold Nanoparticles for Tumor Therapy. Angewandte Chemie - International Edition, 2018, 57, 1491-1496.	7.2	306
36	Reverse Reconstruction and Bioprinting of Bacterial Celluloseâ€Based Functional Total Intervertebral Disc for Therapeutic Implantation. Small, 2018, 14, 1702582.	5.2	51

#	Article	IF	CITATIONS
37	Thermoâ€triggered Release of CRISPR as9 System by Lipidâ€Encapsulated Gold Nanoparticles for Tumor Therapy. Angewandte Chemie, 2018, 130, 1507-1512.	1.6	17
38	A Strategy for Rapid Construction of Blood Vessel‣ike Structures with Complex Cell Alignments. Macromolecular Bioscience, 2018, 18, e1700408.	2.1	10
39	Synthesizing Living Tissues with Microfluidics. Accounts of Chemical Research, 2018, 51, 3166-3173.	7.6	25
40	The construction of drug-resistant cancer cell lines by CRISPR/Cas9 system for drug screening. Science Bulletin, 2018, 63, 1411-1419.	4.3	16
41	Bacterial Cellulose as a Supersoft Neural Interfacing Substrate. ACS Applied Materials & Interfaces, 2018, 10, 33049-33059.	4.0	58
42	A Bifunctional Aggregationâ€Induced Emission Luminogen for Monitoring and Killing of Multidrugâ€Resistant Bacteria. Advanced Functional Materials, 2018, 28, 1804632.	7.8	105
43	Nanocatalyst Complex Can Dephosphorylate Key Proteins in MAPK Pathway for Cancer Therapy. Advanced Healthcare Materials, 2018, 7, e1800533.	3.9	3
44	Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer. Nature Communications, 2017, 8, 15130.	5.8	246
45	Selfâ€Adjusting, Polymeric Multilayered Roll that can Keep the Shapes of the Blood Vessel Scaffolds during Biodegradation. Advanced Materials, 2017, 29, 1700171.	11.1	104
46	Composites of Bacterial Cellulose and Small Molecule-Decorated Gold Nanoparticles for Treating Gram-Negative Bacteria-Infected Wounds. Small, 2017, 13, 1700130.	5.2	119
47	Construction of Smallâ€Diameter Vascular Graft by Shapeâ€Memory and Selfâ€Rolling Bacterial Cellulose Membrane. Advanced Healthcare Materials, 2017, 6, 1601343.	3.9	79
48	Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy. NPG Asia Materials, 2017, 9, e441-e441.	3.8	132
49	Genome Editing for Cancer Therapy: Delivery of Cas9 Protein/sgRNA Plasmid via a Gold Nanocluster/Lipid Core–Shell Nanocarrier. Advanced Science, 2017, 4, 1700175.	5.6	166
50	Small Molecular TGF-β1-Inhibitor-Loaded Electrospun Fibrous Scaffolds for Preventing Hypertrophic Scars. ACS Applied Materials & Interfaces, 2017, 9, 32545-32553.	4.0	53
51	Biomaterials: Selfâ€Adjusting, Polymeric Multilayered Roll that can Keep the Shapes of the Blood Vessel Scaffolds during Biodegradation (Adv. Mater. 28/2017). Advanced Materials, 2017, 29, .	11.1	0
52	In Vitro Evaluation of Essential Mechanical Properties and Cell Behaviors of a Novel Polylactic-co-Glycolic Acid (PLGA)-Based Tubular Scaffold for Small-Diameter Vascular Tissue Engineering. Polymers, 2017, 9, 318.	2.0	19
53	Targeted tumor delivery and controlled release of neuronal drugs with ferritin nanoparticles to regulate pancreatic cancer progression. Journal of Controlled Release, 2016, 232, 131-142.	4.8	83
54	Point-of-Care Detection of β-Lactamase in Milk with a Universal Fluorogenic Probe. Analytical Chemistry, 2016, 88, 5605-5609.	3.2	19

#	Article	IF	CITATIONS
55	Gene regulation with carbon-based siRNA conjugates for cancer therapy. Biomaterials, 2016, 104, 269-278.	5.7	66
56	A strategy for rapid and facile fabrication of controlled, layered blood vessel-like structures. RSC Advances, 2016, 6, 55054-55063.	1.7	18
57	An Early‣tage Atherosclerosis Research Model Based on Microfluidics. Small, 2016, 12, 2022-2034.	5.2	67
58	An on-chip model for investigating the interaction between neurons and cancer cells. Integrative Biology (United Kingdom), 2016, 8, 359-367.	0.6	44
59	Investigation of Tumor Cell Behaviors on a Vascular Microenvironment-Mimicking Microfluidic Chip. Scientific Reports, 2015, 5, 17768.	1.6	33
60	Evaluation of the Effect of the Structure of Bacterial Cellulose on Full Thickness Skin Wound Repair on a Microfluidic Chip. Biomacromolecules, 2015, 16, 780-789.	2.6	107
61	Precise manipulation of cell behaviors on surfaces for construction of tissue/organs. Colloids and Surfaces B: Biointerfaces, 2014, 124, 97-110.	2.5	14
62	Assembly of Functional Threeâ€Dimensional Neuronal Networks on a Microchip. Small, 2014, 10, 2530-2536.	5.2	20
63	Organs on microfluidic chips: A mini review. Science China Chemistry, 2014, 57, 356-364.	4.2	33
64	Neuronal Networks: Assembly of Functional Three-Dimensional Neuronal Networks on a Microchip (Small 13/2014). Small, 2014, 10, 2736-2736.	5.2	0
65	An on-chip study on the influence of geometrical confinement and chemical gradient on cell polarity. Biomicrofluidics, 2014, 8, 052010.	1.2	7
66	Screening reactive oxygen species scavenging properties of platinum nanoparticles on a microfluidic chip. Biofabrication, 2014, 6, 045004.	3.7	26
67	Tissue-specific mechanical and geometrical control of cell viability and actin cytoskeleton alignment. Scientific Reports, 2014, 4, 6160.	1.6	33
68	A micropatterned coculture system for axon guidance reveals that Slit promotes axon fasciculation and regulates the expression of L1CAM. Integrative Biology (United Kingdom), 2013, 5, 617-623.	0.6	12
69	A Strategy for the Construction of Controlled, Threeâ€Dimensional, Multilayered, Tissueâ€Like Structures. Advanced Functional Materials, 2013, 23, 42-46.	7.8	71
70	A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab on A Chip, 2012, 12, 3441.	3.1	134