
Maurizio Popoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9417387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nature Reviews Neuroscience, 2012, 13, 22-37.	10.2	1,147
2	Towards a glutamate hypothesis of depression. Neuropharmacology, 2012, 62, 63-77.	4.1	831
3	Signaling Pathways Regulating Gene Expression, Neuroplasticity, and Neurotrophic Mechanisms in the Action of Antidepressants: A Critical Overview. Pharmacological Reviews, 2006, 58, 115-134.	16.0	270
4	Mode of action of agomelatine: Synergy between melatonergic and 5-HT _{2C} receptors. World Journal of Biological Psychiatry, 2011, 12, 574-587.	2.6	262
5	Chronic Antidepressants Reduce Depolarization-Evoked Glutamate Release and Protein Interactions Favoring Formation of SNARE Complex in Hippocampus. Journal of Neuroscience, 2005, 25, 3270-3279.	3.6	219
6	How can drug discovery for psychiatric disorders be improved?. Nature Reviews Drug Discovery, 2007, 6, 189-201.	46.4	217
7	Acute Stress Increases Depolarization-Evoked Glutamate Release in the Rat Prefrontal/Frontal Cortex: The Dampening Action of Antidepressants. PLoS ONE, 2010, 5, e8566.	2.5	217
8	Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice. Neural Plasticity, 2016, 2016, 1-13.	2.2	210
9	Selective Phosphorylation of Nuclear CREB by Fluoxetine is Linked to Activation of CaM Kinase IV and MAP Kinase Cascades. Neuropsychopharmacology, 2004, 29, 1831-1840.	5.4	171
10	The Action of Antidepressants on the Glutamate System: Regulation of Glutamate Release and Glutamate Receptors. Biological Psychiatry, 2013, 73, 1180-1188.	1.3	138
11	Cellular and molecular mechanisms in the long-term action of antidepressants Dialogues in Clinical Neuroscience, 2008, 10, 385-400.	3.7	128
12	Glutamatergic Neurotransmission: Pathway to Developing Novel Rapid-Acting Antidepressant Treatments. International Journal of Neuropsychopharmacology, 2019, 22, 119-135.	2.1	116
13	Second Messenger-Regulated Protein Kinases in the Brain. Journal of Neurochemistry, 2001, 74, 21-33.	3.9	112
14	Modulation of synaptic plasticity by stress and antidepressants. Bipolar Disorders, 2002, 4, 166-182.	1.9	110
15	Behavioural consequences of two chronic psychosocial stress paradigms: Anxiety without depression. Psychoneuroendocrinology, 2012, 37, 702-714.	2.7	102
16	Stress, glucocorticoids and glutamate release: Effects of antidepressant drugs. Neurochemistry International, 2011, 59, 138-149.	3.8	99
17	Physical Exercise and Antidepressants Enhance BDNF Targeting in Hippocampal CA3 Dendrites: Further Evidence of a Spatial Code for BDNF Splice Variants. Neuropsychopharmacology, 2012, 37, 1600-1611.	5.4	96
18	Regulation of Editing and Expression of Glutamate α-Amino-Propionic-Acid (AMPA)/Kainate Receptors by Antidepressant Drugs. Biological Psychiatry, 2006, 59, 713-720.	1.3	92

#	Article	IF	CITATIONS
19	Association between promoter polymorphic haplotypes of interleukin-10 gene and schizophrenia. Biological Psychiatry, 2002, 51, 480-484.	1.3	81
20	Early-life stress and antidepressants modulate peripheral biomarkers in a gene–environment rat model of depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010, 34, 1037-1048.	4.8	78
21	Chronic mild stress induces anhedonic behavior and changes in glutamate release, BDNF trafficking and dendrite morphology only in stress vulnerable rats. The rapid restorative action of ketamine. Neurobiology of Stress, 2019, 10, 100160.	4.0	77
22	The stressed synapse 2.0: pathophysiological mechanisms in stress-related neuropsychiatric disorders. Nature Reviews Neuroscience, 2022, 23, 86-103.	10.2	73
23	The pharmacological properties of antidepressants. International Clinical Psychopharmacology, 2010, 25, 117-131.	1.7	70
24	Physical exercise and acute restraint stress differentially modulate hippocampal brainâ€derived neurotrophic factor transcripts and epigenetic mechanisms in mice. Hippocampus, 2015, 25, 1380-1392.	1.9	70
25	Brain-Derived Neurotrophic Factor Val66Met Human Polymorphism Impairs the Beneficial Exercise-Induced Neurobiological Changes in Mice. Neuropsychopharmacology, 2016, 41, 3070-3079.	5.4	70
26	LSD1 modulates stress-evoked transcription of immediate early genes and emotional behavior. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3651-3656.	7.1	70
27	Functional and Structural Remodeling of Clutamate Synapses in Prefrontal and Frontal Cortex Induced by Behavioral Stress. Frontiers in Psychiatry, 2015, 6, 60.	2.6	65
28	Acute or Chronic? A Stressful Question. Trends in Neurosciences, 2017, 40, 525-535.	8.6	65
29	Antidepressant treatments and function of glutamate ionotropic receptors mediating amine release in hippocampus. Neuropharmacology, 2007, 53, 27-36.	4.1	64
30	Remodelling by early-life stress of NMDA receptor-dependent synaptic plasticity in a gene–environment rat model of depression. International Journal of Neuropsychopharmacology, 2009, 12, 553.	2.1	63
31	Abnormal exocytotic release of glutamate in a mouse model of amyotrophic lateral sclerosis. Journal of Neurochemistry, 2011, 116, 1028-1042.	3.9	63
32	Differential expression of synaptic proteins after chronic restraint stress in rat prefrontal cortex and hippocampus. Brain Research, 2011, 1385, 26-37.	2.2	62
33	Synaptotagmin is endogenously phosphorylated by Ca2+/calmodulin protein kinase II in synaptic vesicles. FEBS Letters, 1993, 317, 85-88.	2.8	61
34	Chronic antidepressant treatments induce a time-dependent up-regulation of AMPA receptor subunit protein levels. Neurochemistry International, 2011, 59, 896-905.	3.8	61
35	Changes of Synaptotagmin Interaction with t-SNARE Proteins In Vitro After Calcium/Calmodulin-Dependent Phosphorylation. Journal of Neurochemistry, 2001, 74, 209-221.	3.9	52
36	Early-life stress and antidepressant treatment involve synaptic signaling and Erk kinases in a gene-environment model of depression. Journal of Psychiatric Research, 2010, 44, 511-520.	3.1	50

#	Article	lF	CITATIONS
37	Blockade of stress-induced increase of glutamate release in the rat prefrontal/frontal cortex by agomelatine involves synergy between melatonergic and 5-HT2C receptor-dependent pathways. BMC Neuroscience, 2010, 11, 68.	1.9	50
38	Ketamine regulates the presynaptic release machinery in the hippocampus. Journal of Psychiatric Research, 2013, 47, 892-899.	3.1	50
39	Expression and Dendritic Trafficking of BDNF-6 Splice Variant are Impaired in Knock-In Mice Carrying Human BDNF Val66Met Polymorphism. International Journal of Neuropsychopharmacology, 2015, 18, pyv069.	2.1	50
40	Chronic Antidepressants Induce Redistribution and Differential Activation of αCaM Kinase II between Presynaptic Compartments. Neuropsychopharmacology, 2007, 32, 2511-2519.	5.4	46
41	What Acute Stress Protocols Can Tell Us About PTSD and Stress-Related Neuropsychiatric Disorders. Frontiers in Pharmacology, 2018, 9, 758.	3.5	46
42	Synaptoproteomics of learned helpless rats involve energy metabolism and cellular remodeling pathways in depressive-like behavior and antidepressant response. Neuropharmacology, 2011, 60, 1243-1253.	4.1	43
43	Synergistic mechanisms involved in the antidepressant effects of agomelatine. European Neuropsychopharmacology, 2012, 22, S482-S486.	0.7	42
44	Temporal Dynamics of Acute Stress-Induced Dendritic Remodeling in Medial Prefrontal Cortex and the Protective Effect of Desipramine. Cerebral Cortex, 2017, 27, bhv254.	2.9	41
45	Early induction of CREB activation and CREB-regulating signalling by antidepressants. International Journal of Neuropsychopharmacology, 2009, 12, 1367.	2.1	40
46	The interaction between the internal clock and antidepressant efficacy. International Clinical Psychopharmacology, 2007, 22, S9-S14.	1.7	39
47	Agomelatine. CNS Drugs, 2009, 23, 27-34.	5.9	38
48	Antidepressant Treatments Change 5-HT2C Receptor mRNA Expression in Rat Prefrontal/Frontal Cortex and Hippocampus. Neuropsychobiology, 2011, 63, 160-168.	1.9	38
49	S-Ketamine Reverses Hippocampal Dendritic Spine Deficits in Flinders Sensitive Line Rats Within 1Âh of Administration. Molecular Neurobiology, 2019, 56, 7368-7379.	4.0	38
50	Antidepressants activate CaMKII in neuron cell body by Thr286 phosphorylation. NeuroReport, 2004, 15, 2393-2396.	1.2	37
51	Selective regulation of presynaptic Calcium/Calmodulin-Dependent protein kinase II by psychotropic drugs. Biological Psychiatry, 2003, 53, 442-449.	1.3	36
52	A new efficient method for synaptic vesicle quantification reveals differences between medial prefrontal cortex perforated and nonperforated synapses. Journal of Comparative Neurology, 2014, 522, 284-297.	1.6	35
53	Long Term Blockade of Serotonin Reuptake Affects Synaptotagmin Phosphorylation in the Hippocampus. Molecular Pharmacology, 1997, 51, 19-26.	2.3	34
54	Expression Profiling of a Genetic Animal Model of Depression Reveals Novel Molecular Pathways Underlying Depressive-Like Behaviours. PLoS ONE, 2010, 5, e12596.	2.5	33

#	Article	IF	CITATIONS
55	Abnormalities in α/β-CaMKII and related mechanisms suggest synaptic dysfunction in hippocampus of LPA1 receptor knockout mice. International Journal of Neuropsychopharmacology, 2011, 14, 941-953.	2.1	32
56	Lost in translation. New unexplored avenues for neuropsychopharmacology: epigenetics and microRNAs. Expert Opinion on Investigational Drugs, 2013, 22, 217-233.	4.1	32
57	Chronic treatment with agomelatine or venlafaxine reduces depolarization-evoked glutamate release from hippocampal synaptosomes. BMC Neuroscience, 2013, 14, 75.	1.9	31
58	Serine/threonine kinases as molecular targets of antidepressants: implications for pharmacological treatment and pathophysiology of affective disorders. , 2001, 89, 149-170.		28
59	Acute Footshock Stress Induces Time-Dependent Modifications of AMPA/NMDA Protein Expression and AMPA Phosphorylation. Neural Plasticity, 2016, 2016, 1-10.	2.2	27
60	Chronic social defeat stress differentially regulates the expression of <i>BDNF</i> transcripts and epigenetic modifying enzymes in susceptible and resilient mice. World Journal of Biological Psychiatry, 2019, 20, 555-566.	2.6	26
61	Positive AMPA receptor modulation in the treatment of neuropsychiatric disorders: A long and winding road. Drug Discovery Today, 2021, 26, 2816-2838.	6.4	26
62	Altered mechanisms underlying the abnormal glutamate release in amyotrophic lateral sclerosis at a pre-symptomatic stage of the disease. Neurobiology of Disease, 2016, 95, 122-133.	4.4	25
63	Chronic Desipramine Prevents Acute Stress-Induced Reorganization of Medial Prefrontal Cortex Architecture by Blocking Glutamate Vesicle Accumulation and Excitatory Synapse Increase. International Journal of Neuropsychopharmacology, 2015, 18, .	2.1	24
64	Modulation by chronic stress and ketamine of ionotropic AMPA/NMDA and metabotropic glutamate receptors in the rat hippocampus. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 104, 110033.	4.8	24
65	Reduced CREB phosphorylation after chronic lithium treatment is associated with down-regulation of CaM kinase IV in rat hippocampus. International Journal of Neuropsychopharmacology, 2007, 10, 491.	2.1	22
66	Acute Inescapable Stress Rapidly Increases Synaptic Energy Metabolism in Prefrontal Cortex and Alters Working Memory Performance. Cerebral Cortex, 2019, 29, 4948-4957.	2.9	20
67	miR-9-5p is involved in the rescue of stress-dependent dendritic shortening of hippocampal pyramidal neurons induced by acute antidepressant treatment with ketamine. Neurobiology of Stress, 2021, 15, 100381.	4.0	20
68	Glutamate hypothesis of depression and its consequences for antidepressant treatments. Expert Review of Neurotherapeutics, 2012, 12, 1169-1172.	2.8	19
69	Acute Ketamine Facilitates Fear Memory Extinction in a Rat Model of PTSD Along With Restoring Glutamatergic Alterations and Dendritic Atrophy in the Prefrontal Cortex. Frontiers in Pharmacology, 2022, 13, 759626.	3.5	17
70	A hemagglutinin specific for sialic acids in a rat brain synaptic vesicle-enriched fraction. Neurochemical Research, 1988, 13, 63-67.	3.3	16
71	ErbB3 mRNA leukocyte levels as a biomarker for major depressive disorder. BMC Psychiatry, 2012, 12, 145.	2.6	16
72	Apocynin Prevents Abnormal Megakaryopoiesis and Platelet Activation Induced by Chronic Stress. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-12.	4.0	16

#	Article	IF	CITATIONS
73	Depression-Associated Gene Negr1-Fgfr2 Pathway Is Altered by Antidepressant Treatment. Cells, 2020, 9, 1818.	4.1	16
74	BDNF Val66Met polymorphism alters food intake and hypothalamic BDNF expression in mice. Journal of Cellular Physiology, 2020, 235, 9667-9675.	4.1	16
75	Ca2+/phospholipid-binding and syntaxin-binding of native synaptotagmin I. Life Sciences, 1997, 61, 711-721.	4.3	15
76	Sub-Chronic Stress Exacerbates the Pro-Thrombotic Phenotype in BDNFVal/Met Mice: Gene-Environment Interaction in the Modulation of Arterial Thrombosis. International Journal of Molecular Sciences, 2018, 19, 3235.	4.1	15
77	The expression of plasticity-related genes in an acute model of stress is modulated by chronic desipramine in a time-dependent manner within medial prefrontal cortex. European Neuropsychopharmacology, 2017, 27, 19-28.	0.7	14
78	Kynurenine pathway is altered in BDNF Val66Met knock-in mice: Effect of physical exercise. Brain, Behavior, and Immunity, 2020, 89, 440-450.	4.1	14
79	Global epigenetic analysis of BDNF Val66Met mice hippocampus reveals changes in dendrite and spine remodeling genes. Hippocampus, 2018, 28, 783-795.	1.9	13
80	Synaptoproteomic Analysis of a Rat Gene-Environment Model of Depression Reveals Involvement of Energy Metabolism and Cellular Remodeling Pathways. International Journal of Neuropsychopharmacology, 2015, 18, pyu067-pyu067.	2.1	12
81	The Potential Role of miRNAs in Cognitive Frailty. Frontiers in Aging Neuroscience, 2021, 13, 763110.	3.4	12
82	Long-term treatment with s-adenosylmethionine induces changes in presynaptic cam kinase II and synapsin I. Biological Psychiatry, 2001, 50, 337-344.	1.3	11
83	SRF and SRFΔ5 Splicing Isoform Recruit Corepressor LSD1/KDM1A Modifying Structural Neuroplasticity and Environmental Stress Response. Molecular Neurobiology, 2020, 57, 393-407.	4.0	11
84	Apocynin Prevents Anxiety-Like Behavior and Histone Deacetylases Overexpression Induced by Sub-Chronic Stress in Mice. Biomolecules, 2021, 11, 885.	4.0	11
85	Long-term soluble Aβ1–40 activates CaM kinase II in organotypic hippocampal cultures. Neurobiology of Aging, 2007, 28, 1388-1395.	3.1	10
86	miRNome Profiling Detects miR-101-3p and miR-142-5p as Putative Blood Biomarkers of Frailty Syndrome. Genes, 2022, 13, 231.	2.4	10
87	Gene expression signature of antidepressant treatment response/non-response in Flinders Sensitive Line rats subjected to maternal separation. European Neuropsychopharmacology, 2020, 31, 69-85.	0.7	9
88	Expression and phosphorylation of δ-CaM kinase II in cultured Alzheimer fibroblasts. Neurobiology of Aging, 2004, 25, 1187-1196.	3.1	7
89	Changes in signaling pathways regulating neuroplasticity induced by neurokinin 1 receptor knockout. European Journal of Neuroscience, 2005, 21, 1370-1378.	2.6	6
90	Modification of presynaptic CaM kinase II affinity for ATP in hippocampus after long term blockade of serotonin reuptake. Life Sciences, 2000, 67, 1959-1967.	4.3	4

#	Article	IF	CITATIONS
91	Structural Plasticity and Molecular Markers in Hippocampus of Male Rats after Acute Stress. Neuroscience, 2020, 438, 100-115.	2.3	4
92	Synaptic Stress, Changes in Glutamate Transmission and Circuitry, and Psychopathology. , 2014, , 33-52.		1
93	Editorial. World Journal of Biological Psychiatry, 2020, 21, 577-578.	2.6	Ο