SÃ³nia Simões

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9417196/publications.pdf Version: 2024-02-01

<u> <u>SÃ</u>3ΝΙΑ SIMÃUES</u>

#	Article	IF	CITATIONS
1	Preliminary tribo-electrochemical and biological responses of the Ti-TiB-TiCx in-situ composites intended for load-bearing biomedical implants. Journal of Alloys and Compounds, 2022, 896, 162965.	5.5	12
2	Joining of Ti6Al4V to Al2O3 Using Nanomultilayers. Nanomaterials, 2022, 12, 706.	4.1	0
3	Joining of Zirconia to Ti6Al4V Using Ag-Cu Sputter-Coated Ti Brazing Filler. Metals, 2022, 12, 358.	2.3	2
4	Diffusion Bonding of Ti6Al4V to Al2O3 Using Ni/Ti Reactive Multilayers. Metals, 2021, 11, 655.	2.3	6
5	Investigation on the Strengthening Mechanisms of Nickel Matrix Nanocomposites. Nanomaterials, 2021, 11, 1426.	4.1	10
6	Seedless Cu Electroplating on Co-W Thin Films in Low pH Electrolyte: Early Stages of Formation. Nanomaterials, 2021, 11, 1914.	4.1	3
7	Advances in Microstructural Characterization of Metals by EBSD. Metals, 2021, 11, 1452.	2.3	Ο
8	Heat-Treated Ni-CNT Nanocomposites Produced by Powder Metallurgy Route. Materials, 2021, 14, 5458.	2.9	3
9	Strengthening Mechanisms in Carbon Nanotubes Reinforced Metal Matrix Composites: A Review. Metals, 2021, 11, 1613.	2.3	18
10	Strengthening Mechanisms of Aluminum Matrix Nanocomposites Reinforced with CNTs Produced by Powder Metallurgy. Metals, 2021, 11, 1711.	2.3	8
11	Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers. Metals, 2021, 11, 1728.	2.3	6
12	Effect of Deposition Parameters on the Reactivity of Al/Ni Multilayer Thin Films. Coatings, 2020, 10, 721.	2.6	3
13	Recent Advances in EBSD Characterization of Metals. Metals, 2020, 10, 1097.	2.3	48
14	Effect of Morphology and Structure of MWCNTs on Metal Matrix Nanocomposites. Materials, 2020, 13, 5557.	2.9	13
15	Joining Alumina to Titanium Alloys Using Ag-Cu Sputter-Coated Ti Brazing Filler. Materials, 2020, 13, 4802.	2.9	9
16	Characterization of Ni–CNTs Nanocomposites Produced by Ball-Milling. Metals, 2020, 10, 2.	2.3	12
17	EBSD Analysis of Metal Matrix Nanocomposite Microstructure Produced by Powder Metallurgy. Nanomaterials, 2019, 9, 878.	4.1	22
18	Joining of TiAl Alloy Using Novel Ag–Cu Sputtered Coated Ti Brazing Filler. Microscopy and Microanalysis, 2019, 25, 192-195.	0.4	3

SÃ³NIA SIMõES

#	Article	IF	CITATIONS
19	Multilayered ZrN/CrN coatings with enhanced thermal and mechanical properties. Journal of Alloys and Compounds, 2019, 776, 679-690.	5.5	64
20	Microstructural Characterization of Carbon Nanotubes (CNTs)-Reinforced Nickel Matrix Nanocomposites. Microscopy and Microanalysis, 2019, 25, 180-186.	0.4	9
21	HIGH-TEMPERATURE IN SITU DSC STUDIES OF MULTILAYER ZrN/CrN COATINGS OBTAINED BY CA-PVD. High Temperature Material Processes, 2019, 23, 221-237.	0.6	1
22	Study of Advanced Nanoscale ZrN/CrN Multilayer Coatings. East European Journal of Physics, 2019, , .	0.8	0
23	Diffusion Bonding of TiAl to Ti6Al4V Using Nanolayers. Journal of Materials Engineering and Performance, 2018, 27, 5064-5068.	2.5	8
24	The influence of deposition conditions and bilayer thickness on physical-mechanical properties of CA-PVD multilayer ZrN/CrN coatings. Materials Characterization, 2018, 140, 189-196.	4.4	50
25	Raman spectroscopy fingerprint of stainless steel-MWCNTs nanocomposite processed by ball-milling. AIP Advances, 2018, 8, .	1.3	13
26	Microstructural Characterization of Dissimilar Titanium Alloys Joints Using Ni/Al Nanolayers. Metals, 2018, 8, 715.	2.3	10
27	Diffusion Bonding and Brazing of Advanced Materials. Metals, 2018, 8, 959.	2.3	9
28	Recent Progress in the Joining of Titanium Alloys to Ceramics. Metals, 2018, 8, 876.	2.3	21
29	Morphology, Structure and Thermal Properties of Multilayer ZrN/CrN Coatings. , 2018, , .		2
30	Joining of γ-TiAl Alloy to Ni-Based Superalloy Using Ag-Cu Sputtered Coated Ti Brazing Filler Foil. Metals, 2018, 8, 723.	2.3	13
31	Electrical and Tensile Properties of Carbon Nanotubes-Reinforced Aluminum Alloy 6101 Wire. Journal of Nanoscience and Nanotechnology, 2017, 17, 4837-4841.	0.9	4
32	Effect of functionalization and size of CNTs in the production of nanocomposites. Microscopy and Microanalysis, 2017, 23, 1942-1943.	0.4	1
33	Multiwall carbon nanotubes filled with Al4C3: Spectroscopic signatures for electron-phonon coupling due to doping process. Carbon, 2017, 124, 348-356.	10.3	9
34	TiAl diffusion bonding using Ni/Ti multilayers. Welding in the World, Le Soudage Dans Le Monde, 2017, 61, 1267-1273.	2.5	12
35	Characterization of multilayered ZrN/CrN coatings deposited by vacuum arc technology. , 2017, , .		4
36	Aluminum and Nickel Matrix Composites Reinforced by CNTs: Dispersion/Mixture by Ultrasonication. Metals, 2017, 7, 279.	2.3	47

3

Sónia Simões

#	Article	IF	CITATIONS
37	Joining of TiAl to Steel by Diffusion Bonding with Ni/Ti Reactive Multilayers. Metals, 2016, 6, 96.	2.3	31
38	Microstructural Characterization of Aluminum-Carbon Nanotube Nanocomposites Produced Using Different Dispersion Methods. Microscopy and Microanalysis, 2016, 22, 725-732.	0.4	24
39	Effect of dispersion method in the production of Al-CNTs nanocomposites. Microscopy and Microanalysis, 2016, 22, 52-53.	0.4	4
40	Characterization of TiAl diffusion bonds using Ni/Ti nanolayers. Microscopy and Microanalysis, 2016, 22, 54-55.	0.4	0
41	Cold rolled versus sputtered Ni/Ti multilayers for reaction-assisted diffusion bonding. Welding in the World, Le Soudage Dans Le Monde, 2016, 60, 337-344.	2.5	14
42	Ni/Al Multilayers Produced by Accumulative Roll Bonding and Sputtering. Journal of Materials Engineering and Performance, 2016, 25, 4394-4401.	2.5	13
43	Microstructural Characterization of Diffusion Bonds Assisted by Ni/Ti Nanolayers. Journal of Materials Engineering and Performance, 2016, 25, 3245-3251.	2.5	7
44	Reaction-assisted diffusion bonding of TiAl alloy to steel. Materials Chemistry and Physics, 2016, 171, 73-82.	4.0	17
45	Characterization of Ni/Ti interlayer foil to assist diffusion bonding Microscopy and Microanalysis, 2015, 21, 120-121.	0.4	1
46	TEM Characterization of a Mould Steel in Pre-hardened Condition and After Subsequent Heat Treatments. Microscopy and Microanalysis, 2015, 21, 51-52.	0.4	2
47	Microstructural Characterization of CNT/Al Nanocomposites Produced by Hot Extrusion. Microscopy and Microanalysis, 2015, 21, 53-54.	0.4	Ο
48	TEM and HRTEM characterization of nanocomposites reinforced with carbon nanotubes. Microscopy and Microanalysis, 2015, 21, 86-87.	0.4	2
49	Diffusion Brazing of Ti6Al4V and \hat{I}^3 -TiAl alloy with Al/Cu multifoils fillers. Microscopy and Microanalysis, 2015, 21, 124-125.	0.4	0
50	Ni/Ti and Ni/Al Laminated Composites Produced by ARB and Annealing: Microstructural Aspects. Microscopy and Microanalysis, 2015, 21, 23-24.	0.4	3
51	Influence of dispersion/mixture time on mechanical properties of Al–CNTs nanocomposites. Composite Structures, 2015, 126, 114-122.	5.8	60
52	TEM and HRTEM Characterization of TiAl Diffusion Bonds Using Ni/Al Nanolayers. Microscopy and Microanalysis, 2015, 21, 132-139.	0.4	13
53	One-Step Synthesis and Characterization of a Nanocomposite Based on Carbon Nanotubes/Aluminum and Its Reinforcement Effect on the Metal Matrix. Journal of Materials Science and Engineering B, 2015, 5, .	0.3	0
54	Reactive Commercial Ni/Al Nanolayers for Joining Lightweight Alloys. Journal of Materials Engineering and Performance, 2014, 23, 1536-1543.	2.5	25

Sónia Simões

#	Article	IF	CITATIONS
55	Improved dispersion of carbon nanotubes in aluminum nanocomposites. Composite Structures, 2014, 108, 992-1000.	5.8	74
56	Reaction zone formed during diffusion bonding of TiNi to Ti6Al4V using Ni/Ti nanolayers. Journal of Materials Science, 2013, 48, 7718-7727.	3.7	37
57	Microstructure of Reaction Zone Formed During Diffusion Bonding of TiAl with Ni/Al Multilayer. Journal of Materials Engineering and Performance, 2012, 21, 678-682.	2.5	26
58	Anisothermal solid-state reactions of Ni/Al nanometric multilayers. Intermetallics, 2011, 19, 350-356.	3.9	50
59	Diffusion bonding of TiAl using reactive Ni/Al nanolayers and Ti and Ni foils. Materials Chemistry and Physics, 2011, 128, 202-207.	4.0	58
60	TEM Characterization of As-Deposited and Annealed Ni/Al Multilayer Thin Film. Microscopy and Microanalysis, 2010, 16, 662-669.	0.4	9
61	Diffusion bonding of TiAl using Ni/Al multilayers. Journal of Materials Science, 2010, 45, 4351-4357.	3.7	47
62	Reaction-Assisted Diffusion Bonding of Advanced Materials. Defect and Diffusion Forum, 2010, 297-301, 972-977.	0.4	17
63	<i>In situ</i> TEM study of grain growth in nanocrystalline copper thin films. Nanotechnology, 2010, 21, 145701.	2.6	115
64	Production of intermetallic compounds from Ti/Al and Ni/Al multilayer thin films—A comparative study. Journal of Alloys and Compounds, 2009, 484, 335-340.	5.5	67
65	Intermixing in Ni/Al multilayer thin films. Microscopy and Microanalysis, 2009, 15, 75-76.	0.4	4
66	Joining of TiAl alloys using Ni/Al multilayers. Microscopy and Microanalysis, 2009, 15, 73-74.	0.4	0
67	TEM and SEM in-situ annealing of nanocrystalline copper thin films. Microscopy and Microanalysis, 2008, 14, 49-52.	0.4	4
68	Effect of Temperature in the Evolution of Ni/Al Nanolayers. Microscopy and Microanalysis, 2008, 14, 41-42.	0.4	0
69	Thermal Stability of Nanocrystalline Copper Thin Films. Microscopy and Microanalysis, 2007, 13, .	0.4	1
70	In-Situ TEM Annealing of Nanocrystalline Copper Thin Films. Microscopy and Microanalysis, 2007, 13, .	0.4	0
71	Joining of Superalloys to Intermetallics Using Nanolayers. Advanced Materials Research, 0, 59, 225-229.	0.3	39
72	Effect of Annealing Conditions on the Grain Size of Nanocrystalline Copper Thin Films. Materials Science Forum, 0, 587-588, 483-487.	0.3	7