Francois Rousset

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9417012/francois-rousset-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

36,772 163 64 170 h-index g-index citations papers 8.02 170 39,443 5.2 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
163	Sex-specific spatial variation in fitness in the highly dimorphic Leucadendron rubrum. <i>Molecular Ecology</i> , 2021 , 30, 1721-1735	5.7	O
162	GSpace: an exact coalescence simulator of recombining genomes under isolation by distance. <i>Bioinformatics</i> , 2021 ,	7.2	1
161	Farming plant cooperation in crops. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2020 , 287, 20191290	4.4	8
160	When Do Individuals Maximize Their Inclusive Fitness?. <i>American Naturalist</i> , 2020 , 195, 717-732	3.7	6
159	Does extrinsic mortality accelerate the pace of life? A bare-bones approach. <i>Evolution and Human Behavior</i> , 2020 , 41, 486-492	4	10
158	Isoscape Computation and Inference of Spatial Origins With Mixed Models Using the R package IsoriX 2019 , 207-236		12
157	Adaptive responses of animals to climate change are most likely insufficient. <i>Nature Communications</i> , 2019 , 10, 3109	17.4	141
156	Social support drives female dominance in the spotted hyaena. <i>Nature Ecology and Evolution</i> , 2019 , 3, 71-76	12.3	25
155	Black Truffle, a Hermaphrodite with Forced Unisexual Behaviour. <i>Trends in Microbiology</i> , 2017 , 25, 784-	·787.4	18
154	A reassessment of explanations for discordant introgressions of mitochondrial and nuclear genomes. <i>Evolution; International Journal of Organic Evolution</i> , 2017 , 71, 2140-2158	3.8	70
153	The summary-likelihood method and its implementation in the Infusion package. <i>Molecular Ecology Resources</i> , 2017 , 17, 110-119	8.4	4
152	Resampling: An improvement of importance sampling in varying population size models. <i>Theoretical Population Biology</i> , 2017 , 114, 70-87	1.2	1
151	Pollen dispersal slows geographical range shift and accelerates ecological niche shift under climate change. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E57	′4 ¹ - ¹ 8 ⁵	29
150	The Evolution of Mutual Mate Choice under Direct Benefits. <i>American Naturalist</i> , 2016 , 188, 521-538	3.7	24
149	How the truffle got its mate: insights from genetic structure in spontaneous and planted Mediterranean populations of Tuber melanosporum. <i>Molecular Ecology</i> , 2016 , 25, 5611-5627	5.7	29
148	Stable coexistence of incompatible Wolbachia along a narrow contact zone in mosquito field populations. <i>Molecular Ecology</i> , 2015 , 24, 508-21	5.7	20
147	Regression, least squares, and the general version of inclusive fitness. <i>Evolution; International Journal of Organic Evolution</i> , 2015 , 69, 2963-70	3.8	16

(2012-2015)

146	Plasmodium falciparum mating patterns and mosquito infectivity of natural isolates of gametocytes. <i>PLoS ONE</i> , 2015 , 10, e0123777	3.7	32
145	The non-proliferative nature of ascidian folliculogenesis as a model of highly ordered cellular topology distinct from proliferative epithelia. <i>PLoS ONE</i> , 2015 , 10, e0126341	3.7	3
144	Fitness, inclusive fitness, and optimization. <i>Biology and Philosophy</i> , 2014 , 29, 181-195	1.7	18
143	The genetical theory of social behaviour. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2014 , 369, 20130357	5.8	46
142	Testing environmental and genetic effects in the presence of spatial autocorrelation. <i>Ecography</i> , 2014 , 37, 781-790	6.5	135
141	Matrix inversions for chromosomal inversions: a method to construct summary statistics in complex coalescent models. <i>Theoretical Population Biology</i> , 2014 , 97, 1-10	1.2	2
140	Maximum-likelihood inference of population size contractions from microsatellite data. <i>Molecular Biology and Evolution</i> , 2014 , 31, 2805-23	8.3	51
139	The evolution of wealth transmission in human populations: a stochastic model. <i>Journal of Physics: Conference Series</i> , 2014 , 490, 012052	0.3	
138	How choosy should I be? The relative searching time predicts evolution of choosiness under direct sexual selection. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2014 , 281, 20140190	4.4	27
137	Exegeses on maximum genetic differentiation. <i>Genetics</i> , 2013 , 194, 557-9	4	9
137	Exegeses on maximum genetic differentiation. <i>Genetics</i> , 2013 , 194, 557-9 Dismantling the Mantel tests. <i>Methods in Ecology and Evolution</i> , 2013 , 4, 336-344	4 7·7	9
136	Dismantling the Mantel tests. <i>Methods in Ecology and Evolution</i> , 2013 , 4, 336-344 RBFOX2 is an important regulator of mesenchymal tissue-specific splicing in both normal and	7:7	318
136	Dismantling the Mantel tests. <i>Methods in Ecology and Evolution</i> , 2013 , 4, 336-344 RBFOX2 is an important regulator of mesenchymal tissue-specific splicing in both normal and cancer tissues. <i>Molecular and Cellular Biology</i> , 2013 , 33, 396-405 Applying ecological and evolutionary theory to cancer: a long and winding road. <i>Evolutionary</i>	7·7 4.8	318 98
136 135 134	Dismantling the Mantel tests. <i>Methods in Ecology and Evolution</i> , 2013 , 4, 336-344 RBFOX2 is an important regulator of mesenchymal tissue-specific splicing in both normal and cancer tissues. <i>Molecular and Cellular Biology</i> , 2013 , 33, 396-405 Applying ecological and evolutionary theory to cancer: a long and winding road. <i>Evolutionary Applications</i> , 2013 , 6, 1-10 How does pollen versus seed dispersal affect niche evolution?. <i>Evolution; International Journal of</i>	7·7 4·8 4·8	318 98 57
136 135 134	Dismantling the Mantel tests. <i>Methods in Ecology and Evolution</i> , 2013 , 4, 336-344 RBFOX2 is an important regulator of mesenchymal tissue-specific splicing in both normal and cancer tissues. <i>Molecular and Cellular Biology</i> , 2013 , 33, 396-405 Applying ecological and evolutionary theory to cancer: a long and winding road. <i>Evolutionary Applications</i> , 2013 , 6, 1-10 How does pollen versus seed dispersal affect niche evolution?. <i>Evolution; International Journal of Organic Evolution</i> , 2013 , 67, 792-805 The joint evolution of dispersal and dormancy in a metapopulation with local extinctions and kin	7·7 4.8 4.8	318985727
136 135 134 133	Dismantling the Mantel tests. <i>Methods in Ecology and Evolution</i> , 2013 , 4, 336-344 RBFOX2 is an important regulator of mesenchymal tissue-specific splicing in both normal and cancer tissues. <i>Molecular and Cellular Biology</i> , 2013 , 33, 396-405 Applying ecological and evolutionary theory to cancer: a long and winding road. <i>Evolutionary Applications</i> , 2013 , 6, 1-10 How does pollen versus seed dispersal affect niche evolution?. <i>Evolution; International Journal of Organic Evolution</i> , 2013 , 67, 792-805 The joint evolution of dispersal and dormancy in a metapopulation with local extinctions and kin competition. <i>Evolution; International Journal of Organic Evolution</i> , 2013 , 67, 1676-91 The evolution of social discounting in hierarchically clustered populations. <i>Molecular Ecology</i> , 2012 ,	7.7 4.8 4.8 3.8	318 98 57 27

128	Demographic consequences of the selective forces controlling density-dependent dispersal 2012 , 266	-279	7
127	Much ado about nothing: Nowak et al.ß charge against inclusive fitness theory. <i>Journal of Evolutionary Biology</i> , 2011 , 24, 1386-92	2.3	34
126	Inferences on pathogenic fungus population structures from microsatellite data: new insights from spatial genetics approaches. <i>Molecular Ecology</i> , 2011 , 20, 1661-74	5.7	20
125	Adaptation due to symbionts and conflicts between heritable agents of biological information. <i>Nature Reviews Genetics</i> , 2011 , 12, 663	30.1	13
124	Inclusive fitness theory and eusociality. <i>Nature</i> , 2011 , 471, E1-4; author reply E9-10	50.4	242
123	Evolution. The plant-fungal marketplace. <i>Science</i> , 2011 , 333, 828-9	33.3	56
122	In defence of model-based inference in phylogeography. <i>Molecular Ecology</i> , 2010 , 19, 436-446	5.7	127
121	Effective size of the hierarchically structured populations of the agent of malaria: a coalescent-based model. <i>Heredity</i> , 2010 , 104, 371-7	3.6	3
120	Isolation by distance in a continuous population under stochastic demographic fluctuations. <i>Journal of Evolutionary Biology</i> , 2010 , 23, 53-71	2.3	21
119	How life history and demography promote or inhibit the evolution of helping behaviours. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2010 , 365, 2599-617	5.8	164
118	Are host genetics the predominant determinant of persistent nasal Staphylococcus aureus carriage in humans?. <i>Journal of Infectious Diseases</i> , 2010 , 202, 924-34	7	118
117	Limited dispersal in mobile hunter-gatherer Baka Pygmies. <i>Biology Letters</i> , 2010 , 6, 858-61	3.6	15
116	Emergence and dissemination of extended-spectrum beta-lactamase-producing Escherichia coli in the community: lessons from the study of a remote and controlled population. <i>Journal of Infectious Diseases</i> , 2010 , 202, 515-23	7	47
115	Polymorphisms in Anopheles gambiae immune genes associated with natural resistance to Plasmodium falciparum. <i>PLoS Pathogens</i> , 2010 , 6, e1001112	7.6	70
114	Low linkage disequilibrium in wild Anopheles gambiae s.l. populations. <i>BMC Genetics</i> , 2010 , 11, 81	2.6	17
113	Topological control of life and death in non-proliferative epithelia. <i>PLoS ONE</i> , 2009 , 4, e4202	3.7	12
112	Perturbation expansions of multilocus fixation probabilities for frequency-dependent selection with applications to the Hill-Robertson effect and to the joint evolution of helping and punishment. <i>Theoretical Population Biology</i> , 2009 , 76, 35-51	1.2	14
111	Is inbreeding depression lower in maladapted populations? A quantitative genetics model. <i>Evolution; International Journal of Organic Evolution</i> , 2009 , 63, 1807-19	3.8	24

(2006-2009)

110	On the evolution of harming and recognition in finite panmictic and infinite structured populations. <i>Evolution; International Journal of Organic Evolution</i> , 2009 , 63, 2896-913	3.8	28
109	Strong effects of heterosis on the evolution of dispersal rates. <i>Journal of Evolutionary Biology</i> , 2009 , 22, 1221-33	2.3	20
108	Joint effects of inbreeding and local adaptation on the evolution of genetic load after fragmentation. <i>Conservation Biology</i> , 2009 , 23, 1618-27	6	64
107	Stochasticity in evolution. <i>Trends in Ecology and Evolution</i> , 2009 , 24, 157-65	10.9	116
106	IBDSim: a computer program to simulate genotypic data under isolation by distance. <i>Molecular Ecology Resources</i> , 2009 , 9, 107-9	8.4	43
105	genepop®07: a complete re-implementation of the genepop software for Windows and Linux. <i>Molecular Ecology Resources</i> , 2008 , 8, 103-6	8.4	6408
104	Migration load in plants: role of pollen and seed dispersal in heterogeneous landscapes. <i>Journal of Evolutionary Biology</i> , 2008 , 21, 294-309	2.3	52
103	Multilocus models in the infinite island model of population structure. <i>Theoretical Population Biology</i> , 2008 , 73, 529-42	1.2	37
102	Selection and gene flow on a diminishing cline of melanic peppered moths. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 16212-7	11.5	57
101	A comparison of Anopheles gambiae and Plasmodium falciparum genetic structure over space and time. <i>Microbes and Infection</i> , 2008 , 10, 269-75	9.3	23
100	Inferences from Spatial Population Genetics 2008 , 945-979		22
99	Constraints on the origin and maintenance of genetic kin recognition. <i>Evolution; International Journal of Organic Evolution</i> , 2007 , 61, 2320-30	3.8	134
98	Likelihood and approximate likelihood analyses of genetic structure in a linear habitat: performance and robustness to model mis-specification. <i>Molecular Biology and Evolution</i> , 2007 , 24, 2730	0843	16
97	Strong reciprocity or strong ferocity? A population genetic view of the evolution of altruistic punishment. <i>American Naturalist</i> , 2007 , 170, 21-36	3.7	82
96	Compatible genetic and ecological estimates of dispersal rates in insect (Coenagrion mercuriale: Odonata: Zygoptera) populations: analysis of Rheighbourhood sizePusing a more precise estimator. <i>Molecular Ecology</i> , 2007 , 16, 737-51	5.7	101
95	HIGH WOLBACHIA DENSITY CORRELATES WITH COST OF INFECTION FOR INSECTICIDE RESISTANT CULEX PIPIENS MOSQUITOES. <i>Evolution; International Journal of Organic Evolution</i> , 2006 , 60, 303	3.8	2
 94	POPULATION DEMOGRAPHY AND THE EVOLUTION OF HELPING BEHAVIORS. <i>Evolution;</i> International Journal of Organic Evolution, 2006 , 60, 1137	3.8	2
93	Separation of time scales, fixation probabilities and convergence to evolutionarily stable states under isolation by distance. <i>Theoretical Population Biology</i> , 2006 , 69, 165-79	1.2	38

92	SELECTIVE INTERACTIONS BETWEEN SHORT-DISTANCE POLLEN AND SEED DISPERSAL IN SELF-COMPATIBLE SPECIES. <i>Evolution; International Journal of Organic Evolution</i> , 2006 , 60, 2257	3.8	2
91	HIGH WOLBACHIA DENSITY CORRELATES WITH COST OF INFECTION FOR INSECTICIDE RESISTANT CULEX PIPIENS MOSQUITOES. <i>Evolution; International Journal of Organic Evolution</i> , 2006 , 60, 303-314	3.8	112
90	POPULATION DEMOGRAPHY AND THE EVOLUTION OF HELPING BEHAVIORS. <i>Evolution;</i> International Journal of Organic Evolution, 2006 , 60, 1137-1151	3.8	102
89	SELECTIVE INTERACTIONS BETWEEN SHORT-DISTANCE POLLEN AND SEED DISPERSAL IN SELF-COMPATIBLE SPECIES. <i>Evolution; International Journal of Organic Evolution</i> , 2006 , 60, 2257-2271	3.8	31
88	Population demography and the evolution of helping behaviors. <i>Evolution; International Journal of Organic Evolution</i> , 2006 , 60, 1137-51	3.8	32
87	Stepwise mutation likelihood computation by sequential importance sampling in subdivided population models. <i>Theoretical Population Biology</i> , 2005 , 68, 41-53	1.2	36
86	Wright meets AD: not all landscapes are adaptive. <i>Journal of Evolutionary Biology</i> , 2005 , 18, 1166-9	2.3	8
85	Genetic isolation between two sympatric host plant races of the European corn borer, Ostrinia nubilalis Hubner. II: assortative mating and host-plant preferences for oviposition. <i>Heredity</i> , 2005 , 94, 264-70	3.6	69
84	Germline bottlenecks, biparental inheritance and selection on mitochondrial variants: a two-level selection model. <i>Genetics</i> , 2005 , 170, 1385-99	4	35
83	"Clonal" population structure of the malaria agent Plasmodium falciparum in high-infection regions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 173	18 ¹ 53	70
82	Gene flow between chromosomal forms of the malaria vector Anopheles funestus in Cameroon, Central Africa, and its relevance in malaria fighting. <i>Genetics</i> , 2005 , 169, 301-11	4	37
81	Inbreeding depression and the evolution of dispersal rates: a multilocus model. <i>American Naturalist</i> , 2005 , 166, 708-21	3.7	81
80	The robustness of Hamilton® rule with inbreeding and dominance: kin selection and fixation probabilities under partial sib mating. <i>American Naturalist</i> , 2004 , 164, 214-31	3.7	38
79	Joint effects of self-fertilization and population structure on mutation load, inbreeding depression and heterosis. <i>Genetics</i> , 2004 , 167, 1001-15	4	52
78	Influence of spatial and temporal heterogeneities on the estimation of demographic parameters in a continuous population using individual microsatellite data. <i>Genetics</i> , 2004 , 166, 1081-92	4	75
77	Causes, Mechanisms and Consequences of Dispersal 2004 , 307-335		110
76	INTERSEXUAL COMPETITION AS AN EXPLANATION FOR SEX-RATIO AND DISPERSAL BIASES IN POLYGYNOUS SPECIES. <i>Evolution; International Journal of Organic Evolution</i> , 2004 , 58, 2398	3.8	1
75	Infestation by the mite Harpirhynchus nidulans in the Bearded Tit Panurus biarmicus. <i>Bird Study</i> , 2004 , 51, 34-40	0.7	5

(2002-2004)

74	High dose refuge strategies and genetically modified crops Geply to Tabashnik et al <i>Journal of Evolutionary Biology</i> , 2004 , 17, 913-918	2.3	15
73	Intersexual competition as an explanation for sex-ratio and dispersal biases in polygynous species. <i>Evolution; International Journal of Organic Evolution</i> , 2004 , 58, 2398-408	3.8	36
72	Inferences from Spatial Population Genetics 2004 ,		1
71	Inclusive fitness for traits affecting metapopulation demography. <i>Theoretical Population Biology</i> , 2004 , 65, 127-41	1.2	98
70	Genetic Structure and Selection in Subdivided Populations (MPB-40) 2004,		247
69	Influence of Spatial and Temporal Heterogeneities on the Estimation of Demographic Parameters in a Continuous Population Using Individual Microsatellite Data. <i>Genetics</i> , 2004 , 166, 1081-1092	4	5
68	Joint evolution of sex ratio and dispersal: conditions for higher dispersal rates from good habitats. <i>Evolutionary Ecology</i> , 2003 , 17, 67-84	1.8	39
67	A minimal derivation of convergence stability measures. <i>Journal of Theoretical Biology</i> , 2003 , 221, 665-8	3 2.3	49
66	Modelling the spatial configuration of refuges for a sustainable control of pests: a case study of Bt cotton. <i>Journal of Evolutionary Biology</i> , 2003 , 16, 378-87	2.3	62
65	Isolation and characterization of microsatellite DNA markers in the malaria vector Anopheles maculipennis. <i>Molecular Ecology Notes</i> , 2003 , 3, 417-419		1
64	Host-plant-associated genetic differentiation in Northern French populations of the European corn borer. <i>Heredity</i> , 2003 , 90, 141-9	3.6	89
63	Effective size in simple metapopulation models. <i>Heredity</i> , 2003 , 91, 107-11	3.6	19
62	Influence of mutational and sampling factors on the estimation of demographic parameters in a "continuous" population under isolation by distance. <i>Molecular Biology and Evolution</i> , 2003 , 20, 491-502	8.3	84
61	Selection and drift in subdivided populations: a straightforward method for deriving diffusion approximations and applications involving dominance, selfing and local extinctions. <i>Genetics</i> , 2003 , 165, 2153-66	4	74
60	Isolation and characterization of polymorphic microsatellite markers from the mosquito Anopheles moucheti, malaria vector in Africa. <i>Molecular Ecology Notes</i> , 2002 , 3, 56-58		5
59	Evolution of the distribution of dispersal distance under distance-dependent cost of dispersal. <i>Journal of Evolutionary Biology</i> , 2002 , 15, 515-523	2.3	118
58	Inbreeding and relatedness coefficients: what do they measure?. Heredity, 2002, 88, 371-80	3.6	138
57	PARTIAL MANTEL TESTS: REPLY TO CASTELLANO AND BALLETTO. <i>Evolution; International Journal of Organic Evolution</i> , 2002 , 56, 1874-1875	3.8	75

56	Dispersal, kin competition, and the ideal free distribution in a spatially heterogeneous population. <i>Theoretical Population Biology</i> , 2002 , 62, 169-80	1.2	76
55	PARTIAL MANTEL TESTS: REPLY TO CASTELLANO AND BALLETTO. <i>Evolution; International Journal of Organic Evolution</i> , 2002 , 56, 1874	3.8	5
54	High Wolbachia density in insecticide-resistant mosquitoes. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2002 , 269, 1413-6	4.4	113
53	"Neighbourhood" size, dispersal and density estimates in the prickly forest skink (Gnypetoscincus queenslandiae) using individual genetic and demographic methods. <i>Molecular Ecology</i> , 2001 , 10, 1917-2	27 ^{5.7}	68
52	Are partial mantel tests adequate?. Evolution; International Journal of Organic Evolution, 2001, 55, 1703	s- 5 3.8	162
51	ARE PARTIAL MANTEL TESTS ADEQUATE?. Evolution; International Journal of Organic Evolution, 2001 , 55, 1703	3.8	12
50	Population genetics and dynamics of the black truffle in a man-made truffle field. <i>Heredity</i> , 2001 , 86, 451-8	3.6	58
49	Absence of evidence for isolation by distance in an expanding cane toad (Bufo marinus) population: an individual-based analysis of microsatellite genotypes. <i>Molecular Ecology</i> , 2000 , 9, 1905-9	5.7	52
48	Genetic differentiation between individuals. <i>Journal of Evolutionary Biology</i> , 2000 , 13, 58-62	2.3	530
47	A theoretical basis for measures of kin selection in subdivided populations: finite populations and localized dispersal. <i>Journal of Evolutionary Biology</i> , 2000 , 13, 814-825	2.3	161
46	Kin selection and natal dispersal in an age-structured population. <i>Theoretical Population Biology</i> , 2000 , 58, 143-59	1.2	67
45	Random samples of MalBot. <i>Trends in Ecology and Evolution</i> , 2000 , 15, 43-44	10.9	
44	Juxtaposed Microsatellite Systems as Diagnostic Markers for Admixture: Theoretical Aspects. <i>Molecular Biology and Evolution</i> , 1999 , 16, 898-908	8.3	33
43	Can perverse polymorph symbionts sublimate their vices?. <i>Journal of Evolutionary Biology</i> , 1999 , 12, 83	2- <u>8</u> 33	
42	A stable triple Wolbachia infection in Drosophila with nearly additive incompatibility effects. Heredity, 1999 , 82 (Pt 6), 620-7	3.6	72
41	Genetic Differentiation in Tetranychus Urticae (Acari: Tetranychidae) from greenhouses in France. <i>Experimental and Applied Acarology</i> , 1999 , 23, 365-378	2.1	24
40	Wolbachia infections are distributed throughout insect somatic and germ line tissues. <i>Insect Biochemistry and Molecular Biology</i> , 1999 , 29, 153-60	4.5	299
39	Evolution of stepping-stone dispersal rates. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 1999 , 266, 2507-13	4.4	74

[1996-1999]

38	Genetic differentiation in populations with different classes of individuals. <i>Theoretical Population Biology</i> , 1999 , 55, 297-308	1.2	40
37	Reproductive Value vs Sources and Sinks. <i>Oikos</i> , 1999 , 86, 591	4	28
36	Genetic differentiation in Tetranychus urticae (Acari: Tetranychidae) from greenhouses in France 1999 , 175-185		3
35	Genetic differentiation within and between two habitats. <i>Genetics</i> , 1999 , 151, 397-407	4	43
34	Migration/selection balance and ecotypic differentiation in the mosquito Culex pipiens. <i>Molecular Ecology</i> , 1998 , 7, 197-208	5.7	29
33	Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta). <i>Molecular Ecology</i> , 1998 , 7, 339-53	5.7	375
32	Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 1998 , 265, 509-15	4.4	880
31	Analysis of population structure in autotetraploid species. <i>Genetics</i> , 1998 , 150, 921-30	4	129
30	Pleiotropy of adaptive changes in populations: comparisons among insecticide resistance genes in Culex pipiens. <i>Genetical Research</i> , 1997 , 70, 195-203	1.1	82
29	Contrasting levels of variability between cytoplasmic genomes and incompatibility types in the mosquito Culex pipiens. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 1997 , 264, 245-51	4.4	102
28	Statistical analyses of population genetic data: new tools, old concepts. <i>Trends in Ecology and Evolution</i> , 1997 , 12, 313-7	10.9	89
27	Consequences of Wolbachia transmission process on the infection dynamics. <i>Journal of Evolutionary Biology</i> , 1997 , 10, 601-612	2.3	7
26	Heterozygote deficiency in the mussel Mytilus edulis species complex revisited. <i>Marine Ecology - Progress Series</i> , 1997 , 156, 225-237	2.6	46
25	Cloning and detection of insecticide resistance genes 1997 , 399-419		4
24	Consequences of. <i>Journal of Evolutionary Biology</i> , 1997 , 10, 601	2.3	4
23	Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. <i>Genetics</i> , 1997 , 145, 1219-28	4	2702
22	Inference of Parasite-Induced Host Mortality from Distributions of Parasit Loads. <i>Ecology</i> , 1996 , 77, 22	03 _‡ 2621	171
21	Molecular identification of a Wolbachia endosymbiont in a Tetranychus urticae strain (Acari: Tetranychidae). <i>Insect Molecular Biology</i> , 1996 , 5, 217-21	3.4	38

20	What generates the diversity of Wolbachia Irthropod interactions?. <i>Biodiversity and Conservation</i> , 1996 , 5, 999-1013	3.4	28
19	Equilibrium values of measures of population subdivision for stepwise mutation processes. <i>Genetics</i> , 1996 , 142, 1357-62	4	335
18	Testing differentiation in diploid populations. <i>Genetics</i> , 1996 , 144, 1933-40	4	981
17	The role of passive migration in the dispersal of resistance genes in Culex pipiens quinquefasciatus within French Polynesia. <i>Genetical Research</i> , 1995 , 66, 139-146	1.1	41
16	Differential mortality of two closely related host species induced by one parasite. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 1995 , 260, 349-352	4.4	69
15	An Exact Test for Population Differentiation. <i>Evolution; International Journal of Organic Evolution</i> , 1995 , 49, 1280	3.8	1147
14	Evolution of single and double Wolbachia symbioses during speciation in the Drosophila simulans complex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1995 , 92, 638	39 ^{<u>1</u>913⁵}	166
13	GENEPOP (Version 1.2): Population Genetics Software for Exact Tests and Ecumenicism. <i>Journal of Heredity</i> , 1995 , 86, 248-249	2.4	13090
12	AN EXACT TEST FOR POPULATION DIFFERENTIATION. <i>Evolution; International Journal of Organic Evolution</i> , 1995 , 49, 1280-1283	3.8	1352
11	Testing heterozygote excess and deficiency. <i>Genetics</i> , 1995 , 140, 1413-9	4	553
10	Testing heterozygote excess and deficiency. <i>Genetics</i> , 1995 , 140, 1413-9 Properties of Drosophila simulans strains experimentally infected by different clones of the bacterium Wolbachia. <i>Heredity</i> , 1994 , 72 (Pt 4), 325-31	3.6	553 65
	Properties of Drosophila simulans strains experimentally infected by different clones of the		
10	Properties of Drosophila simulans strains experimentally infected by different clones of the bacterium Wolbachia. <i>Heredity</i> , 1994 , 72 (Pt 4), 325-31 The reproductive incompatibility system in Drosophila simulans: DAPI-staining analysis of the	3.6	65
10	Properties of Drosophila simulans strains experimentally infected by different clones of the bacterium Wolbachia. <i>Heredity</i> , 1994 , 72 (Pt 4), 325-31 The reproductive incompatibility system in Drosophila simulans: DAPI-staining analysis of the Wolbachia symbionts in sperm cysts. <i>Journal of Invertebrate Pathology</i> , 1993 , 61, 226-30 Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods.	3.6 2.6	65
10 9 8	Properties of Drosophila simulans strains experimentally infected by different clones of the bacterium Wolbachia. <i>Heredity</i> , 1994 , 72 (Pt 4), 325-31 The reproductive incompatibility system in Drosophila simulans: DAPI-staining analysis of the Wolbachia symbionts in sperm cysts. <i>Journal of Invertebrate Pathology</i> , 1993 , 61, 226-30 Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 1992 , 250, 91-8 Molecular identification of Wolbachia, the agent of cytoplasmic incompatibility in Drosophila simulans, and variability in relation with host mitochondrial types. <i>Proceedings of the Royal Society</i>	3.6 2.6 4.4	65 128 350
10 9 8 7	Properties of Drosophila simulans strains experimentally infected by different clones of the bacterium Wolbachia. <i>Heredity</i> , 1994 , 72 (Pt 4), 325-31 The reproductive incompatibility system in Drosophila simulans: DAPI-staining analysis of the Wolbachia symbionts in sperm cysts. <i>Journal of Invertebrate Pathology</i> , 1993 , 61, 226-30 Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 1992 , 250, 91-8 Molecular identification of Wolbachia, the agent of cytoplasmic incompatibility in Drosophila simulans, and variability in relation with host mitochondrial types. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 1992 , 247, 163-8 Evolution of compensatory substitutions through G.U intermediate state in Drosophila rRNA.	3.6 2.6 4.4 4.4	65 128 350 83
10 9 8 7 6	Properties of Drosophila simulans strains experimentally infected by different clones of the bacterium Wolbachia. <i>Heredity</i> , 1994 , 72 (Pt 4), 325-31 The reproductive incompatibility system in Drosophila simulans: DAPI-staining analysis of the Wolbachia symbionts in sperm cysts. <i>Journal of Invertebrate Pathology</i> , 1993 , 61, 226-30 Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 1992 , 250, 91-8 Molecular identification of Wolbachia, the agent of cytoplasmic incompatibility in Drosophila simulans, and variability in relation with host mitochondrial types. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 1992 , 247, 163-8 Evolution of compensatory substitutions through G.U intermediate state in Drosophila rRNA. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1991 , 88, 10032-6 Cytoplasmic incompatibilities in the mosquito Culex pipiens: How to explain a cytotype	3.6 2.6 4.4 4.4 11.5	65 128 35° 83 78

2 Inbreeding and relatedness coefficients: what do they measure?

1

Modelling isoscapes using mixed models

4