
Grant A Challen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9416937/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pevonedistat targets malignant cells in myeloproliferative neoplasms <i>in vitro</i> and <i>in vivo</i> via NFκB pathway inhibition. Blood Advances, 2022, 6, 611-623.	2.5	11
2	<i>Txnip</i> Enhances Fitness of <i>Dnmt3a</i> -Mutant Hematopoietic Stem Cells via <i>p21</i> . Blood Cancer Discovery, 2022, 3, 220-239.	2.6	7
3	LKB1/ <i>STK11</i> Is a Tumor Suppressor in the Progression of Myeloproliferative Neoplasms. Cancer Discovery, 2021, 11, 1398-1410.	7.7	29
4	Epigenomic regulation of human T-cell leukemia virus by chromatin-insulator CTCF. PLoS Pathogens, 2021, 17, e1009577.	2.1	12
5	A Humanized Animal Model Predicts Clonal Evolution and Therapeutic Vulnerabilities in Myeloproliferative Neoplasms. Cancer Discovery, 2021, 11, 3126-3141.	7.7	17
6	<i>TET2</i> and <i>DNMT3A</i> Mutations Exert Divergent Effects on DNA Repair and Sensitivity of Leukemia Cells to PARP Inhibitors. Cancer Research, 2021, 81, 5089-5101.	0.4	25
7	Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFNÎ ³ signaling. Cell Stem Cell, 2021, 28, 1428-1442.e6.	5.2	164
8	Simplified murine multipotent progenitor isolation scheme: Establishing a consensus approach for multipotent progenitor identification. Experimental Hematology, 2021, 104, 55-63.	0.2	38
9	The Histone Demethylase KDM6B Is a Genetic Dependency of NOTCH1-Driven T-ALL. Blood, 2021, 138, 782-782.	0.6	1
10	DNMT3A Regulates Hematopoietic Stem Cell Function Via DNA Methylation-Independent Functions. Blood, 2021, 138, 24-24.	0.6	1
11	Clonal Hematopoiesis Is Associated with Risk of Cardiovascular Disease in Individuals with Human Immunodeficiency Virus. Blood, 2021, 138, 3277-3277.	0.6	0
12	DUSP6 Mediates Resistance to JAK2 Inhibition and Drives Myeloproliferative Neoplasm Disease Progression. Blood, 2021, 138, 55-55.	0.6	1
13	TGFβR-SMAD3 Signaling Induces Resistance to PARP Inhibitors in the Bone Marrow Microenvironment. Cell Reports, 2020, 33, 108221.	2.9	18
14	Clonal Hematopoiesis: Mechanisms Driving Dominance of Stem Cell Clones. Blood, 2020, 136, 1590-1598.	0.6	67
15	Interferon regulatory factor 4 as a therapeutic target in adult T-cell leukemia lymphoma. Retrovirology, 2020, 17, 27.	0.9	8
16	Divergent Effects of Dnmt3a and Tet2 Mutations on Hematopoietic Progenitor Cell Fitness. Stem Cell Reports, 2020, 14, 551-560.	2.3	53
17	Loss of LKB1/STK11 Facilitates Leukemic Progression of the Myeloproliferative Neoplasms. Blood, 2020, 136, 1-1.	0.6	3
18	<i>TET2</i> and <i>DNMT3A</i> Mutations Exert Divergent Effects on DNA Repair and Sensitivity of Leukemia Cells to PARP Inhibitors. Blood, 2020, 136, 4-4.	0.6	1

GRANT A CHALLEN

#	Article	IF	CITATIONS
19	Kdm6b regulates context-dependent hematopoietic stem cell self-renewal and leukemogenesis. Leukemia, 2019, 33, 2506-2521.	3.3	49
20	Inflammatory cytokines promote clonal hematopoiesis with specific mutations in ulcerative colitis patients. Experimental Hematology, 2019, 80, 36-41.e3.	0.2	90
21	IRAK4 mediates colitis-induced tumorigenesis and chemoresistance in colorectal cancer. JCI Insight, 2019, 4, .	2.3	26
22	Loss of Dnmt3a Immortalizes Hematopoietic Stem Cells InÂVivo. Cell Reports, 2018, 23, 1-10.	2.9	159
23	A TFIID-SAGA Perturbation that Targets MYB and Suppresses Acute Myeloid Leukemia. Cancer Cell, 2018, 33, 13-28.e8.	7.7	61
24	An activating mutation of interferon regulatory factor 4 (IRF4) in adult T-cell leukemia. Journal of Biological Chemistry, 2018, 293, 6844-6858.	1.6	21
25	Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance. Nature Communications, 2018, 9, 1250.	5.8	151
26	The GNASR201C mutation associated with clonal hematopoiesis supports transplantable hematopoietic stem cell activity. Experimental Hematology, 2018, 57, 14-20.	0.2	5
27	Protein Kinase C Epsilon Is a Key Regulator of Mitochondrial Redox Homeostasis in Acute Myeloid Leukemia. Clinical Cancer Research, 2018, 24, 608-618.	3.2	20
28	JARID2 Functions as a Tumor Suppressor in Myeloid Neoplasms by Repressing Self-Renewal in Hematopoietic Progenitor Cells. Cancer Cell, 2018, 34, 741-756.e8.	7.7	44
29	Dominating the Negative: How DNMT3A Mutations Contribute to AML Pathogenesis. Cell Stem Cell, 2017, 20, 7-8.	5.2	12
30	The epigenetic basis of hematopoietic stem cell aging. Seminars in Hematology, 2017, 54, 19-24.	1.8	37
31	Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nature Communications, 2016, 7, 12484.	5.8	523
32	Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biology Open, 2016, 5, 866-874.	0.6	228
33	Inflammatory signals in HSPC development and homeostasis: Too much ofÂaÂgood thing?. Experimental Hematology, 2016, 44, 908-912.	0.2	14
34	DNMT3A Loss Drives Enhancer Hypomethylation in FLT3-ITD-Associated Leukemias. Cancer Cell, 2016, 29, 922-934.	7.7	107
35	DNA methylation in normal and malignant hematopoiesis. International Journal of Hematology, 2016, 103, 617-626.	0.7	32
36	Enforced differentiation of Dnmt3a-null bone marrow leads to failure with c-Kit mutations driving leukemic transformation. Blood, 2015, 125, 619-628.	0.6	86

GRANT A CHALLEN

#	Article	IF	CITATIONS
37	Two new routes to make blood: Hematopoietic specification from pluripotent cell lines versus reprogramming of somatic cells. Experimental Hematology, 2015, 43, 756-759.	0.2	5
38	Dnmt3a loss predisposes murine hematopoietic stem cells to malignant transformation. Blood, 2015, 125, 629-638.	0.6	206
39	The Role of Jarid2 in Leukemic Transformation of Chronic Myeloid Neoplasms. Blood, 2015, 126, 1245-1245.	0.6	2
40	Pathways for Oncogenesis in T-Cell Acute Lymphoblastic Leukemia Driven By DNA Methylation and Notch Signaling. Blood, 2015, 126, 1226-1226.	0.6	0
41	Type II Interferon Promotes Differentiation of Myeloid-Biased Hematopoietic Stem Cells. Stem Cells, 2014, 32, 3023-3030.	1.4	105
42	Clonal-level responses of functionally distinct hematopoietic stem cells to trophic factors. Experimental Hematology, 2014, 42, 317-327.e2.	0.2	5
43	Large conserved domains of low DNA methylation maintained by Dnmt3a. Nature Genetics, 2014, 46, 17-23.	9.4	276
44	Dnmt3a and Dnmt3b Have Overlapping and Distinct Functions in Hematopoietic Stem Cells. Cell Stem Cell, 2014, 15, 350-364.	5.2	288
45	Dnmt3a-Deletion Accelerates FLT3-ITD Malignancies In Mice By Hypomethylation Of Enhancer Sites and Activating Stem Cell Programs; Implications For Therapy. Blood, 2013, 122, 595-595.	0.6	1
46	Dnmt3b Has Few Specific Functions In Adult Hematopoietic Stem Cells But Shows Abnormal Activity In The Absence Of Dnmt3a. Blood, 2013, 122, 734-734.	0.6	5
47	Large Conserved Domains Of Low DNA Methylation Maintained By 5-Hydroxymethycytosine and Dnmt3a. Blood, 2013, 122, 2406-2406.	0.6	0
48	Dnmt3a Deletion Predisposes Hematopoietic Stem Cells To Malignant Transformation. Blood, 2013, 122, 4198-4198.	0.6	0
49	Dnmt3a is essential for hematopoietic stem cell differentiation. Nature Genetics, 2012, 44, 23-31.	9.4	916
50	Bridge Over Troubled Stem Cells. Molecular Therapy, 2011, 19, 1756-1758.	3.7	4
51	Runx1 isoforms show differential expression patterns during hematopoietic development but have similar functional effects in adult hematopoietic stem cells. Experimental Hematology, 2010, 38, 403-416.	0.2	76
52	Distinct Hematopoietic Stem Cell Subtypes Are Differentially Regulated by TGF-β1. Cell Stem Cell, 2010, 6, 265-278.	5.2	492
53	Mouse hematopoietic stem cell identification and analysis. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 14-24.	1.1	277
54	Promiscuous Expression of H2B-GFP Transgene in Hematopoietic Stem Cells. PLoS ONE, 2008, 3, e2357.	1.1	37