
Alfredo L Gordon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9416798/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Co-firing of coal/biomass blends in a pilot plant facility: A comparative study between Opuntia ficus-indica and Pinus radiata. Energy, 2018, 145, 1-16.	8.8	10
2	A modeling approach to co-firing biomass/coal blends in pulverized coal utility boilers: Synergistic effects and emissions profiles. Energy, 2017, 120, 663-674.	8.8	44
3	Insights into dynamic surface processes occurring in Rh supported on Zr-grafted Î ³ -Al2O3 during dry reforming of methane. Applied Catalysis B: Environmental, 2014, 156-157, 202-212.	20.2	23
4	Magnesia-supported potassium oxide catalysts for soot combustion: effect of Fe addition on the catalyst activity and stability. Reaction Kinetics, Mechanisms and Catalysis, 2014, 113, 487-497.	1.7	6
5	Catalytic oxidation of soot over alkaline niobates. Journal of Alloys and Compounds, 2013, 551, 255-261.	5.5	28
6	Pyrolyzed phthalocyanines as surrogate carbon catalysts: Initial insights into oxygen-transfer mechanisms. Fuel, 2012, 99, 106-117.	6.4	27
7	Soot oxidation in the presence of NO over alumina-supported bimetallic catalysts K–Me (Me=Cu, Co,) Tj ETQq1	1.0,7843 4.4	14 rgBT /Ove
8	Catalytic filters for the simultaneous removal of soot and NOx: Effect of CO2 and steam on the exhaust gas of diesel engines. Catalysis Today, 2011, 176, 134-138.	4.4	7
9	About the active phases of KNO3/MgO for catalytic soot combustion. Reaction Kinetics, Mechanisms and Catalysis, 2010, 99, 281.	1.7	3
10	Insight on the promoting effect of Zr and Ti on the catalytic properties of Rh/SiO2 for partial oxidation of methane. Applied Catalysis A: General, 2010, 384, 220-229.	4.3	9
11	Effect of Ca-substitution in La1â^'xCaxFeO3 perovskites on the catalytic activity for soot combustion. Fuel Processing Technology, 2010, 91, 546-549.	7.2	30
12	Thermogravimetric study of interactions in the pyrolysis of blends of coal with radiata pine sawdust. Fuel Processing Technology, 2009, 90, 583-590.	7.2	113
13	Catalytic combustion of soot. Effects of added alkali metals on CaO–MgO physical mixtures. Fuel Processing Technology, 2008, 89, 1160-1168.	7.2	51
14	Preparation and characterization of inexpensive heterogeneous catalysts for air pollution control: Two case studies. Catalysis Today, 2007, 123, 208-217.	4.4	15
15	Ignition characteristics of coal blends in an entrained flow furnace. Fuel, 2007, 86, 2076-2080.	6.4	53
16	Soot combustion with K/MgO as catalyst. Applied Catalysis A: General, 2006, 297, 125-134.	4.3	72
17	Soot combustion with K/MgO as catalyst. Applied Catalysis A: General, 2006, 314, 81-88.	4.3	44
18	Char characterization and DTF assays as tools to predict burnout of coal blends in power plants. Fuel, 2005, 84, 247-257.	6.4	59

2

Alfredo L Gordon

#	Article	IF	CITATIONS
19	Ignition behaviour of different rank coals in an entrained flow reactor. Fuel, 2005, 84, 2172-2177.	6.4	51
20	CaO-MgO CATALYSTS FOR SOOT COMBUSTION: KNO3 AS SOURCE FOR DOPING WITH POTASSIUM. Journal of the Chilean Chemical Society, 2005, 50, .	1.2	5
21	Distribution of activation energy model applied to the rapid pyrolysis of coal blends. Journal of Analytical and Applied Pyrolysis, 2004, 71, 465-483.	5.5	34
22	New effects during steam gasification of naphthalene: the synergy between CaO and MgO during the catalytic reaction. Applied Catalysis A: General, 2004, 267, 251-265.	4.3	38
23	Coal blend combustion: fusibility ranking from mineral matter compositionâ [~] †. Fuel, 2003, 82, 2087-2095.	6.4	27
24	Coal blend combustion: link between unburnt carbon in fly ashes and maceral composition. Fuel Processing Technology, 2003, 80, 209-223.	7.2	50
25	A kinetic approach to catalytic pyrolysis of tars. Fuel Processing Technology, 2001, 69, 239-256.	7.2	13
26	Catalytic cooperation at the interface of physical mixtures of CaO and MgO catalysts during steam gasification of naphthalene. Surface and Interface Analysis, 2001, 31, 1031-1041.	1.8	19
27	Steam gasification of tars using a CaO catalyst. Fuel Processing Technology, 1999, 58, 83-102.	7.2	73
28	Structural characterization of tar from a coal gasification plant: Comparison with a coke oven tar and a crude oil flash-column residue. Fuel, 1997, 76, 101-113.	6.4	38
29	On the potassium-catalysed gasification of a Chilean bituminous coal. Fuel, 1990, 69, 789-791.	6.4	14
30	Cyclic gasification of coal in a moving bed. A bench scale study. Canadian Journal of Chemical Engineering, 1986, 64, 808-812.	1.7	2
31	Comments on letter by Ritchie. Chemical Engineering Science, 1982, 37, 800-801.	3.8	Ο
32	A two-parameter model for partial segregation. Chemical Engineering Science, 1981, 36, 839-844.	3.8	8
33	Mixing effects on homogeneous p-order reactions. A two-parameter model for partial segregation. Chemical Engineering Science, 1979, 34, 1097-1103.	3.8	11
34	Modelling of fluidized bed reactors—V Combustion of carbon particles—an extension. Chemical Engineering Science, 1978, 33, 713-722.	3.8	16
35	Modelling of fluidized bed reactors—IV. Chemical Engineering Science, 1976, 31, 1163-1178.	3.8	38