Ondrej Sipr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9416766/publications.pdf

Version: 2024-02-01

88	1,051	18	28
papers	citations	h-index	g-index
89	89	89	1398
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Geometric and electronic structure effects in polarized VK-edge absorption near-edge structure spectra of V2O5. Physical Review B, 1999, 60, 14115-14127.	3.2	67
2	Magnetic structure of free iron clusters compared to iron crystal surfaces. Physical Review B, 2004, 70, .	3.2	58
3	Influence of composition, many-body effects, spin-orbit coupling, and disorder on magnetism of Co-Pt solid-state systems. Physical Review B, 2008, 78, .	3.2	52
4	Trends in the magnetic properties of Fe, Co, and Ni clusters and monolayers on $Ir(111)$, $Pt(111)$, and $Au(111)$. Physical Review B, 2012, 86, .	3.2	51
5	Magnetic moments, exchange coupling, and crossover temperatures of Co clusters on Pt(111) and Au(111). Journal of Physics Condensed Matter, 2007, 19, 096203.	1.8	45
6	Finite-temperature magnetism of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext> Fe </mml:mtext> </mml:mrow> <mml:mi>x < xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:mr< td=""><td>/mml:mi>< 3.2</td><td></td></mml:mr<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mi></mml:msub> 41</mml:mrow></mml:math>	/mml:mi>< 3.2	
7	Magnetocrystalline anisotropy of FePt: A detailed view. Physical Review B, 2016, 94, .	3.2	41
8	Dipole and quadrupole contributions to polarized CuKx-ray absorption near-edge structure spectra of CuO. Physical Review B, 2001, 63, .	3.2	34
9	On the importance of the magnetic dipole term T _z in analyzing X-ray magnetic circular dichroism spectra of clusters. Europhysics Letters, 2009, 87, 67007.	2.0	30
10	Magnetic anisotropy of Fe and Co adatoms and monolayers: Need for a proper treatment of the substrate. Physical Review B, 2010 , 82 , .	3.2	28
11	Magnetic properties of free Fe clusters at finite temperatures from first principles. Europhysics Letters, 2006, 74, 1074-1080.	2.0	27
12	Single 3 <i>d</i> transition metal atoms on multi-layer graphene systems: electronic configurations, bonding mechanisms and role of the substrate. New Journal of Physics, 2014, 16, 062001.	2.9	23
13	Magnetic properties of Co clusters deposited on Pt(111). Applied Physics A: Materials Science and Processing, 2006, 82, 139-144.	2.3	22
14	Theoretical and Experimental Study on the Optoelectronic Properties of Nb ₃ O ₇ (OH) and Nb ₂ O ₅ Photoelectrodes. Journal of Physical Chemistry C, 2016, 120, 23329-23338.	3.1	22
15	Many-body effects in x-ray absorption and magnetic circular dichroism spectra within the LSDA+DMFT framework. Physical Review B, 2011, 84, .	3.2	21
16	Intrinsic orbital and spin magnetism in Rh clusters on inert xenon matrices. Physical Review B, 2010, 82, .	3.2	19
17	Spin wave stiffness and exchange stiffness of doped permalloy via <i>ab initio</i> calculations. Physical Review B, 2019, 100, .	3.2	19
18	Theoretical FeL2,3- andK-edge x-ray magnetic circular dichroism spectra of free iron clusters. Physical Review B, 2005, 72, .	3.2	18

#	Article	IF	Citations
19	Oscillatory magnetic coupling between metallic multilayers across superconducting spacers. Journal of Physics Condensed Matter, 1995, 7, 5239-5269.	1.8	17
20	X-ray-absorption near-edge structure of CuGaSe2 and ZnSe: Experiment and theory. Physical Review B, 1997, 56, 13151-13161.	3.2	17
21	Polarized x-ray-absorption spectra of TiS2, TiSe2, and TiTe2. Physical Review B, 1998, 58, 7668-7674.	3.2	17
22	Cu doped ZnO pellets: study of structure and Cu specific magnetic properties. Journal of Physics Condensed Matter, 2012, 24, 506001.	1.8	16
23	Magnetocrystalline anisotropy energy for adatoms and monolayers on non-magnetic substrates: where does it come from?. Journal of Physics Condensed Matter, 2014, 26, 196002.	1.8	14
24	Local structure and magnetization of ferromagnetic Cu-doped ZnO films: No magnetism at the dopant?. Journal of Alloys and Compounds, 2016, 678, 304-311.	5.5	14
25	Real-space, multiple-scattering-theory method for the calculation of x-ray bremsstrahlung isochromat spectra. Physical Review Letters, 1989, 63, 2076-2079.	7.8	13
26	Real-space multiple-scattering analysis of AgL1- andL3-edge XANES spectra of Ag2O. Journal of Synchrotron Radiation, 1999, 6, 770-772.	2.4	13
27	Ordered and disordered models of local structure around Ag cations in silver borate glasses based on x-ray absorption near-edge structure spectroscopy. Physical Review B, 2004, 69, .	3.2	13
28	Interpretation of bound states in inhomogeneous superconductors: the role of Andreev reflection. Journal of Physics Condensed Matter, 1996, 8, 169-191.	1.8	12
29	Andreev and normal reflections at normal metalâ€"Superconductor boundaries: Limitations of the semiclassical approximation. Journal of Low Temperature Physics, 1997, 106, 315-320.	1.4	12
30	Magnetic properties of Co clusters deposited on Pt(111) and Au(111). Phase Transitions, 2005, 78, 701-709.	1.3	12
31	Co monolayers and adatoms on Pd(100), Pd(111), and Pd(110): Anisotropy of magnetic properties. Physical Review B, 2013, 88, .	3.2	12
32	Interrelationship between structural, optical and transport properties of InP1â^'Bi: DFT approach. Materials Science in Semiconductor Processing, 2016, 41, 45-53.	4.0	12
33	Unoccupied electron states of TiS2 studied by means of polarized x-ray absorption. Physical Review B, 1997, 56, 12232-12237.	3.2	11
34	Integration of free-free radiative-transition matrix elements. Computer Physics Communications, 1991, 66, 259-265.	7. 5	10
35	Influence of temperature on the systematics of magnetic moments of free Fe clusters. Journal of Physics Condensed Matter, 2007, 19, 446205.	1.8	10
36	Multiple scattering theory for non-local and multichannel potentials. Journal of Physics Condensed Matter, 2012, 24, 365501.	1.8	10

#	Article	IF	CITATIONS
37	Polarized CuKedge XANES spectra of CuO – theory and experiment. Journal of Synchrotron Radiation, 2001, 8, 235-237.	2.4	9
38	Interpretation of polarized Cu K x-ray absorption near-edge-structure spectra of CuO. Journal of Physics Condensed Matter, 2001, 13, 8519-8525.	1.8	9
39	Zn K edge and O K edge x-ray absorption spectra of ZnO surfaces: implications for nanorods. Journal of Physics Condensed Matter, 2011, 23, 315501.	1.8	9
40	Illustrative view on the magnetocrystalline anisotropy of adatoms and monolayers. Physical Review B, 2016, 93, .	3.2	9
41	On the bonding and structure of amorphous Nb1-xSixfilms. Journal of Physics Condensed Matter, 1989, 1, 5595-5606.	1.8	8
42	Finite-cluster multiple-scattering theory of x-ray bremsstrahlung isochromat spectra. Physical Review B, 1991, 44, 4832-4842.	3.2	7
43	Electronic structure of silicon nitride. Journal of Alloys and Compounds, 1999, 286, 148-152.	5.5	7
44	X-ray absorption spectroscopy of strongly disordered glasses: Local structure around Ag ions ingâ^Ag2Oâ^™nB2O3. Physical Review B, 2006, 73, .	3.2	7
45	Correlation effects in fcc-Fe _x Ni _{1â^'x} alloys investigated by means of the KKR-CPA. Journal of Physics Condensed Matter, 2014, 26, 274206.	1.8	7
46	Influence of spin-orbit coupling on the magnetic dipole term <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>T</mml:mi><mml:mi>\hat{l}±<td>ni><!--8a2ml:m</td--><td>sub></td></td></mml:mi></mml:msub></mml:math>	ni> 8a2ml:m</td <td>sub></td>	sub>
47	Real-space multiple-scattering analysis of X-ray absorption near-edge K spectra of Cu2O and CuO. Journal of Physics Condensed Matter, 1992, 4, 9389-9400.	1.8	6
48	Influence of interdiffusion on the magnetic moments inCoâ^•Aumultilayers. Physical Review B, 2007, 75, .	3.2	6
49	Electronic structure effects on BK-edge XANES ofÂminerals. Journal of Synchrotron Radiation, 2010, 17, 367-373.	2.4	6
50	Local structure and magnetism of Cu-doped ZnO via Cu <i>K</i> edge XAS and XMCD: theory and experiment. Journal of Physics: Conference Series, 2013, 430, 012128.	0.4	6
51	Probability density of wave function of excited photoelectron: understanding XANES features. Journal of Synchrotron Radiation, 2001, 8, 232-234.	2.4	5
52	Spatial distribution of photoelectrons participating in formation of x-ray absorption spectra. Physical Review B, 2002, 65, .	3.2	5
53	Bulk and Surface Effects in X-Ray Magnetic Circular Dichroism of Iron Clusters. European Physical Journal D, 2003, 53, 55-62.	0.4	5
54	Local environment effects in the magnetic properties and electronic structure of disordered FePt. Physical Review B, 2017, 95, .	3.2	5

#	Article	IF	Citations
55	Electric field control of magnons in magnetic thin films: <i>Ab initio</i> predictions for two-dimensional metallic heterostructures. Physical Review B, 2022, 105, .	3.2	5
56	Cu, Fe, and SK- and L-edge XANES spectra of CuFeS2: Localization and interpretation of pre-peak states. Physical Review B, 2004, 69, .	3.2	4
57	Magnetic properties of finite iron wires on Cu(1 11). Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1658-1659.	2.3	4
58	Effect of atomic vibrations in XANES: polarization-dependent damping of the fine structure at the CuÂ <i>K</i> -edge of (creat) ₂ CuCl ₄ . Journal of Synchrotron Radiation, 2016, 23, 1433-1439.	2.4	4
59	Ca and S <i>K</i> -edge XANES of CaS calculated by different methods: influence of full potential, core hole and Eu doping. Journal of Synchrotron Radiation, 2019, 26, 152-158.	2.4	4
60	Transport properties of doped permalloy via <i>ab initio</i> calculations: Effect of host disorder. Physical Review B, 2020, 101, .	3.2	4
61	Assessing different approaches to $\langle i \rangle$ ab initio $\langle i \rangle$ calculations of spin wave stiffness. Physical Review B, 2020, 101, .	3.2	4
62	Effect of lattice excitations on transient near-edge x-ray absorption spectroscopy. Physical Review B, 2021, 104, .	3.2	4
63	Magnetic structure of iron clusters and iron crystal surfaces. Surface Science, 2004, 566-568, 268-271.	1.9	3
64	Electronic and magnetic properties of free and supported transition metal clusters. Phase Transitions, 2005, 78, 71-83.	1.3	3
65	On the origin of the differences in the Cu K-edge XANES of isostructural and isoelectronic compounds. Journal of Physics Condensed Matter, 2009, 21, 255401.	1.8	3
66	Magnetism of free and supported clusters: a comparative study. Open Physics, 2009, 7, .	1.7	3
67	Spin-spiral state of a Mn monolayer on W(110) studied by soft x-ray absorption spectroscopy at variable temperature. Physical Review B, 2021, 103 , .	3.2	3
68	Angle dependence of matrix elements in X-ray bremsstrahlung isochromat spectroscopy. Journal of Physics Condensed Matter, 1991, 3, 8503-8510.	1.8	2
69	Polarized XANES spectra of titanium dichalcogenides – experiment and theory. Journal of Synchrotron Radiation, 1999, 6, 518-520.	2.4	2
70	Polarized x-ray absorption spectra of CuGeO3 at the Cu and GeKedges. Physical Review B, 2002, 66, .	3.2	2
71	XANES and EXAFS Modelling of Configurational Disorder in Silver Borate Glasses. Physica Scripta, 2005, , 149.	2.5	2
72	B K-Edge XANES of Superstructural Units in Borate Glasses. AIP Conference Proceedings, 2007, , .	0.4	2

#	Article	IF	Citations
73	Trends in magnetism of free Rh clusters via relativisticab-initiocalculations. Journal of Physics Condensed Matter, 2015, 27, 056004.	1.8	2
74	Finite lifetime broadening of calculated X-ray absorption spectra: possible artefacts close to theÂedge. Journal of Synchrotron Radiation, 2018, 25, 523-528.	2.4	2
7 5	Multiple-scattering-theory analysis of XANES spectra of SO2 adsorbed on Cu(100). European Physical Journal D, 1997, 47, 467-471.	0.4	1
76	Ab initio calculation of magnetic structure of small iron nanoclusters. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 713-714.	2.3	1
77	XMCD Spectra of Co Clusters on Au (111) by Ab-Initio Calculations. AIP Conference Proceedings, 2007, , .	0.4	1
78	Multiple Scattering in Green's Function Formalism: Single-Channel andÂMultichannel Versions. Springer Proceedings in Physics, 2018, , 171-196.	0.2	1
79	Local geometry around B atoms in B/Si(1 1 1) from polarized x-ray absorption spectroscopy. Journal of Physics Condensed Matter, 2020, 32, 045901.	1.8	1
80	BIS Study of Silicon Nitride: Experiment and Theory. European Physical Journal Special Topics, 1997, 7, C2-583-C2-584.	0.2	1
81	Partial Probabilities of X-Ray Bremsstrahlung Transitions. Acta Physica Polonica A, 1997, 91, 841-846.	0.5	1
82	First-principles calculations of steady-state voltage-controlled magnetism: Application to x-ray absorption spectroscopy experiments. Physical Review Research, 2020, 2, .	3.6	1
83	Site dependence of the local density of unoccupied states - an aid for understanding trends in x-ray absorption fine structure. Journal of Physics Condensed Matter, 2001, 13, 4291-4302.	1.8	0
84	Similarities and Differences Between XANES Spectra at Analogous Edges of Ternary Semiconductors CuGaSe2, ZnGeAs2 and CuFeS2. Physica Scripta, 2005, , 179.	2.5	0
85	Element-specific gap in the p states for ternary semiconductors CuGaSe ₂ and ZnGeAs ₂ via alignment of x-ray emission and x-ray absorption spectra. Journal of Physics Condensed Matter, 2008, 20, 155206.	1.8	0
86	Relationship between atomically related core levels and ground-state properties of solids: First-principles calculations. Physical Review B, 2008, 77, .	3.2	0
87	Magnetic Dipole Term T_{z} and its Importance for Analysing XMCD Spectra. Springer Proceedings in Physics, 2018, , 387-398.	0.2	0
88	KKR Green's Function Method in Reciprocal and Real Space. Springer Proceedings in Physics, 2018, , 93-142.	0.2	0