Qiu Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9416717/publications.pdf

Version: 2024-02-01

430874 477307 46 966 18 29 citations h-index g-index papers 48 48 48 1145 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Dissolved xylan inhibits cellulosome-based saccharification by binding to the key cellulosomal component of Clostridium thermocellum. International Journal of Biological Macromolecules, 2022, 207, 784-790.	7.5	8
2	Thermophilic whole ell degradation of polyethylene terephthalate using engineered <i>Clostridium thermocellum</i> . Microbial Biotechnology, 2021, 14, 374-385.	4.2	106
3	Structural insight into a GH1 \hat{l}^2 -glucosidase from the oleaginous microalga, Nannochloropsis oceanica. International Journal of Biological Macromolecules, 2021, 170, 196-206.	7.5	10
4	Bacillaenes: Decomposition Trigger Point and Biofilm Enhancement in <i>Bacillus</i> . ACS Omega, 2021, 6, 1093-1098.	3 . 5	20
5	Research advances on arachidonic acid production by fermentation and genetic modification of Mortierella alpina. World Journal of Microbiology and Biotechnology, 2021, 37, 4.	3.6	9
6	NMR chemical shift assignments of a module of unknown function in the cellulosomal secondary scaffoldin ScaF from Clostridium thermocellum. Biomolecular NMR Assignments, 2021, 15, 329-334.	0.8	0
7	Obtaining High-Purity Docosahexaenoic Acid Oil in Thraustochytrid <i>Aurantiochytrium (i) through a Combined Metabolic Engineering Strategy. Journal of Agricultural and Food Chemistry, 2021, 69, 10215-10222.</i>	5. 2	13
8	Coordinated \hat{l}^2 -glucosidase activity with the cellulosome is effective for enhanced lignocellulose saccharification. Bioresource Technology, 2021, 337, 125441.	9.6	26
9	Cocktail biosynthesis of triacylglycerol by rational modulation of diacylglycerol acyltransferases in industrial oleaginous Aurantiochytrium. Biotechnology for Biofuels, 2021, 14, 246.	6.2	9
10	Discovery and mechanism of a pH-dependent dual-binding-site switch in the interaction of a pair of protein modules. Science Advances, 2020, 6, .	10.3	16
11	PUFA-synthase-specific PPTase enhanced the polyunsaturated fatty acid biosynthesis via the polyketide synthase pathway in Aurantiochytrium. Biotechnology for Biofuels, 2020, 13, 152.	6.2	10
12	Optimizing Eicosapentaenoic Acid Production by Grafting a Heterologous Polyketide Synthase Pathway in the Thraustochytrid <i>Aurantiochytrium</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 11253-11260.	5,2	25
13	Robust production of pigment-free pullulan from lignocellulosic hydrolysate by a new fungus co-utilizing glucose and xylose. Carbohydrate Polymers, 2020, 241, 116400.	10.2	24
14	Impact of ammonium sulfite-based sequential pretreatment combinations on two distinct saccharifications of wheat straw. RSC Advances, 2020, 10, 17129-17142.	3.6	4
15	Comprehensive analysis of metabolic alterations in Schizochytrium sp. strains with different DHA content. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1160, 122193.	2.3	6
16	Consolidated bio-saccharification: Leading lignocellulose bioconversion into the real world. Biotechnology Advances, 2020, 40, 107535.	11.7	102
17	Phytohormones as stimulators to improve arachidonic acid biosynthesis in Mortierella alpina. Enzyme and Microbial Technology, 2019, 131, 109381.	3.2	9
18	Changes in peptidomes and Fischer ratios of corn-derived oligopeptides depending on enzyme hydrolysis approaches. Food Chemistry, 2019, 297, 124931.	8.2	19

#	Article	IF	CITATIONS
19	Construction of consolidated bio-saccharification biocatalyst and process optimization for highly efficient lignocellulose solubilization. Biotechnology for Biofuels, 2019, 12, 35.	6.2	27
20	Solution structure of a unicellular microalgae-derived translationally controlled tumor protein revealed both conserved features and structural diversity. Archives of Biochemistry and Biophysics, 2019, 665, 23-29.	3.0	2
21	An Effective Strategy for Identification of Highly Unstable Bacillaenes. Journal of Natural Products, 2019, 82, 3340-3346.	3.0	8
22	Resonance assignments of a cellulosomal double-dockerin from Clostridium thermocellum. Biomolecular NMR Assignments, 2019, 13, 97-101.	0.8	7
23	Firmicutes-enriched IS1447 represents a group of IS3-family insertion sequences exhibiting unique + 1 transcriptional slippage. Biotechnology for Biofuels, 2018, 11, 300.	6.2	4
24	The spatial proximity effect of beta-glucosidase and cellulosomes on cellulose degradation. Enzyme and Microbial Technology, 2018, 115, 52-61.	3.2	17
25	Artificial creation of Chlorella pyrenoidosa mutants for economic sustainable food production. Bioresource Technology, 2018, 268, 340-345.	9.6	27
26	Inducing effects of cellulosic hydrolysate components of lignocellulose on cellulosome synthesis in <i>Clostridium thermocellum</i> . Microbial Biotechnology, 2018, 11, 905-916.	4.2	11
27	Heavy ion mutagenesis combined with triclosan screening provides a new strategy for improving the arachidonic acid yield in Mortierella alpina. BMC Biotechnology, 2018, 18, 23.	3.3	12
28	Determination of the native features of the exoglucanase Cel48S from Clostridium thermocellum. Biotechnology for Biofuels, $2018,11,6.$	6.2	30
29	Regulation of biomass degradation by alternative $\ddot{l}f$ factors in cellulolytic clostridia. Scientific Reports, 2018, 8, 11036.	3.3	24
30	Wastewater recycling technology for fermentation in polyunsaturated fatty acid production. Bioresource Technology, 2017, 235, 79-86.	9.6	19
31	Structural Insight into the Stabilizing Effect of O-Glycosylation. Biochemistry, 2017, 56, 2897-2906.	2.5	29
32	Efficient whole-cell-catalyzing cellulose saccharification using engineered Clostridium thermocellum. Biotechnology for Biofuels, 2017, 10, 124.	6.2	39
33	Selective oxidation of aliphatic C–H bonds in alkylphenols by a chemomimetic biocatalytic system. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5129-E5137.	7.1	19
34	Expression of Vitreoscilla hemoglobin enhances production of arachidonic acid and lipids in Mortierella alpina. BMC Biotechnology, 2017, 17, 68.	3.3	22
35	Resonance assignments of a VapC family toxin from Clostridium thermocellum. Biomolecular NMR Assignments, 2016, 10, 367-371.	0.8	0
36	Low stability of the reduced state of <i>Mycobacterium tuberculosis</i> NrdH redoxin. FEBS Letters, 2016, 590, 387-395.	2.8	0

#	Article	IF	CITATIONS
37	A new strategy for strain improvement of Aurantiochytrium sp. based on heavy-ions mutagenesis and synergistic effects of cold stress and inhibitors of enoyl-ACP reductase. Enzyme and Microbial Technology, 2016, 93-94, 182-190.	3.2	32
38	Transcriptome and gene expression analysis of DHA producer Aurantiochytrium under low temperature conditions. Scientific Reports, 2015, 5, 14446.	3.3	55
39	A novel arabinose-inducible genetic operation system developed for Clostridium cellulolyticum. Biotechnology for Biofuels, 2015, 8, 36.	6.2	28
40	Cellulosome stoichiometry in Clostridium cellulolyticum is regulated by selective RNA processing and stabilization. Nature Communications, 2015, 6, 6900.	12.8	43
41	Current progress of targetron technology: Development, improvement and application in metabolic engineering. Biotechnology Journal, 2015, 10, 855-865.	3 . 5	10
42	Revisiting the NMR solution structure of the Cel48S type-I dockerin module from Clostridium thermocellum reveals a cohesin-primed conformation. Journal of Structural Biology, 2014, 188, 188-193.	2.8	21
43	The contribution of cellulosomal scaffoldins to cellulose hydrolysis by Clostridium thermocellum analyzed by using thermotargetrons. Biotechnology for Biofuels, 2014, 7, 80.	6.2	46
44	Structure determination of archaea-specific ribosomal protein L46a reveals a novel protein fold. Biochemical and Biophysical Research Communications, 2014, 450, 67-72.	2.1	1
45	Resonance assignments of cohesin and dockerin domains from Clostridium acetobutylicum ATCC824. Biomolecular NMR Assignments, 2013, 7, 73-76.	0.8	8
46	Separation and Quantification of Water-Soluble Cellular Metabolites in <i>Clostridium thermocellum</i> vusing Liquid Chromatography-Isotope Dilution Tandem Mass Spectrometry. Analytical Letters, 2013, 46, 2767-2786.	1.8	9