Shanmugam Sankaran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9416024/publications.pdf

Version: 2024-02-01

24 papers 326 citations

933447 10 h-index 18 g-index

24 all docs

24 docs citations

times ranked

24

300 citing authors

#	Article	IF	CITATIONS
1	Grindability studies of thermomechanically processed advanced high strength steel using sol-gel and fused alumina grain-based grinding wheels. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2023, 237, 1970-1985.	2.4	3
2	Grain Size Effect on Creep Properties of 304HCu SS and Modelling of Creep Curves Using Modified Theta Projection Approach., 2022, 7, 635-643.		2
3	Deformation heterogeneity in copper oligocrystals using high-resolution stereo DIC. Materialia, 2021, 18, 101164.	2.7	6
4	On a New Twoâ€Step Air Cooling Method Following Thermomechanically Controlled Rolling: Microstructural Evolution and Mechanical Properties of a Highâ€Strength Multiphase Medium Carbon Microalloyed Steel. Steel Research International, 2021, 92, 2000563.	1.8	0
5	Effect of cutting parameters on cutting force and surface roughness during machining microalloyed steel: Comparison between ferrite–pearlite, tempered martensite and ferrite–bainite–martensite microstructures. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2018. 232. 141-150.	2.4	6
6	Microstructure and Mechanical Properties of V-Nb Microalloyed Ultrafine-Grained Dual-Phase Steels Processed Through Severe Cold Rolling and Intercritical Annealing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 1176-1188.	2.2	15
7	Evolution of microstructure and its influence on tensile properties in thermo-mechanically controlled processed (TMCP) quench and partition (Q&P) steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 705, 376-384.	5.6	30
8	On the Relationship Between Cyclic Deformation Behavior and Slip Mode in 316LN Stainless Steel with Varying Nitrogen Content. Transactions of the Indian Institute of Metals, 2016, 69, 303-308.	1.5	5
9	Influence of TiB2 Addition on the Precipitation Kinetics in Al-7Si-0.3Mg In Situ TiB2 Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2844-2849.	2.2	3
10	Effect of microstructure on the surface finish during machining of V-microalloyed steel: Comparison between ferrite–bainite–martensite and ferrite–pearlite microstructures. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 229, 1463-1466.	2.4	2
11	Microstructural Dependence of Work Hardening Behavior in Martensite-Ferrite Microalloyed Steels. Journal of Materials Engineering and Performance, 2015, 24, 517-528.	2.5	5
12	Thermomechanical and Isothermal Fatigue Behavior of 316LN Stainless Steel with Varying Nitrogen Content. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 695-707.	2.2	31
13	A study on the influence of cutting parameters on forces during machining the multiphase V-microalloyed steel. International Journal of Advanced Manufacturing Technology, 2015, 79, 1285-1292.	3.0	9
14	Influence of Hot Isostatic Pressing on the Microstructure and Mechanical Properties of a Spray-Formed Al-4.5Âwt.% Cu Alloy. Journal of Materials Engineering and Performance, 2014, 23, 1440-1450.	2.5	5
15	Low Cycle Fatigue Behavior of 316LN Stainless Steel Alloyed with Varying Nitrogen Content. Part I: Cyclic Deformation Behavior. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 5044-5056.	2.2	47
16	Low Cycle Fatigue Behavior of 316LN Stainless Steel Alloyed with Varying Nitrogen Content. Part II: Fatigue Life and Fracture Behavior. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 5057-5067.	2.2	25
17	Processing of Bimodal Grain-Sized Ultrafine-Grained Dual Phase Microalloyed V-Nb Steel with 1370ÂMPa Strength and 16Âpct Uniform Elongation Through Warm Rolling and Intercritical Annealing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 5313-5317	2.2	35
18	Influence of Secondary Cyclic Hardening on the Low Cycle Fatigue Behavior of Nitrogen Alloyed 316LN Stainless Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 5625-5629.	2.2	7

#	Article	IF	CITATIONS
19	Influence of spark plasma sintering temperature on the densification, microstructure and mechanical properties of Al-4.5 wt.%Cu alloy. Acta Metallurgica Sinica (English Letters), 2013, 26, 761-771.	2.9	21
20	Development of ultra-fine grained dual phase microalloyed steels through severe cold rolling and intercritical annealing. Transactions of the Indian Institute of Metals, 2011, 64, 89-92.	1.5	3
21	Characterization of microstructure and precipitation behavior in Al-4Cu-xTiB2 in-situ composite. Transactions of the Indian Institute of Metals, 2011, 64, 117-121.	1.5	5
22	Precipitation kinetics in Al-Si-Mg/TiB2 in-situ composites. Transactions of the Indian Institute of Metals, 2011, 64, 123-126.	1.5	15
23	Microstructural evolution and tensile behaviour of medium carbon microalloyed steel processed through two thermomechanical routes. Materials Science and Technology, 2005, 21, 1152-1160.	1.6	23
24	Thermomechanical processing and characterisation of multi-phase microstructures in a V-bearing medium carbon micro-alloyed steel. Journal of Materials Processing Technology, 2003, 139, 642-647.	6.3	23