Cai-Feng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9415635/publications.pdf

Version: 2024-02-01

44042 56687 7,982 171 48 83 citations h-index g-index papers 176 176 176 8810 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Amphiphilic Eggâ€Derived Carbon Dots: Rapid Plasma Fabrication, Pyrolysis Process, and Multicolor Printing Patterns. Angewandte Chemie - International Edition, 2012, 51, 9297-9301.	7.2	604
2	Facile access to versatile fluorescent carbon dots toward light-emitting diodes. Chemical Communications, 2012, 48, 2692.	2.2	463
3	Versatile Bifunctional Magneticâ€Fluorescent Responsive Janus Supraballs Towards the Flexible Bead Display. Advanced Materials, 2011, 23, 2915-2919.	11.1	335
4	Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding. Journal of Materials Chemistry C, 2013, 1, 4925.	2.7	275
5	Triphase Microfluidicâ€Directed Selfâ€Assembly: Anisotropic Colloidal Photonic Crystal Supraparticles and Multicolor Patterns Made Easy. Angewandte Chemie - International Edition, 2012, 51, 2375-2378.	7.2	177
6	Versatile superhydrophobic and photocatalytic films generated from TiO ₂ â€"SiO ₂ @PDMS and their applications on fabrics. Journal of Materials Chemistry A, 2014, 2, 4178-4184.	5.2	169
7	Facile Access to White Fluorescent Carbon Dots toward Light-Emitting Devices. Industrial & Samp; Engineering Chemistry Research, 2014, 53, 6417-6425.	1.8	159
8	Symmetry-Based Magnetic Anisotropy in the Trigonal Bipyramidal Cluster [Tp2(Me3tacn)3Cu3Fe2(CN)6]4+. Journal of the American Chemical Society, 2006, 128, 7162-7163.	6.6	154
9	Highâ€Performance Wearable Microâ€Supercapacitors Based on Microfluidicâ€Directed Nitrogenâ€Doped Graphene Fiber Electrodes. Advanced Functional Materials, 2017, 27, 1702493.	7.8	144
10	Hair-derived carbon dots toward versatile multidimensional fluorescent materials. Journal of Materials Chemistry C, 2014, 2, 6477-6483.	2.7	139
11	Robust Selfâ€Healing Host–Guest Gels from Magnetocaloric Radical Polymerization. Advanced Functional Materials, 2014, 24, 1235-1242.	7.8	132
12	Large-Scale Ultrasonic Fabrication of White Fluorescent Carbon Dots. Industrial & Engineering Chemistry Research, 2016, 55, 5335-5341.	1.8	129
13	Green Synthesis of Carbon Dots toward Anti-Counterfeiting. ACS Sustainable Chemistry and Engineering, 2020, 8, 1566-1572.	3.2	114
14	Hydrophobic Poly(<i>tert</i> ê€butyl acrylate) Photonic Crystals towards Robust Energyâ€6aving Performance. Angewandte Chemie - International Edition, 2019, 58, 13556-13564.	7. 2	110
15	Fluorescent nanomaterial-derived white light-emitting diodes: what's going on. Journal of Materials Chemistry C, 2014, 2, 4358-4373.	2.7	106
16	Large-scale colloidal films with robust structural colors. Materials Horizons, 2019, 6, 90-96.	6.4	106
17	Interface-Directed Assembly of One-Dimensional Ordered Architecture from Quantum Dots Guest and Polymer Host. Journal of the American Chemical Society, 2011, 133, 8412-8415.	6.6	104
18	Largeâ€Scale Fabrication of Robust Artificial Skins from a Biodegradable Sealantâ€Loaded Nanofiber Scaffold to Skin Tissue via Microfluidic Blowâ€Spinning. Advanced Materials, 2020, 32, e2000982.	11.1	99

#	Article	IF	Citations
19	Zinc ion-doped carbon dots with strong yellow photoluminescence. RSC Advances, 2016, 6, 37189-37194.	1.7	98
20	Synthesis, Crystal Structures, and Magnetic Properties of Cyano-Bridged Heterobimetallic Chains Based on [(Tp)Fe(CN)3] Inorganic Chemistry, 2006, 45, 8942-8949.	1.9	90
21	New 3dâ^'4f Heterometallic Coordination Polymers Based on Pyrazole-Bridged Cu ^{II} Ln ^{III} Dinuclear Units and Sulfate Anions: Syntheses, Structures, and Magnetic Properties. Crystal Growth and Design, 2009, 9, 1028-1035.	1.4	90
22	Chiral Molecule-Based Ferrimagnets with Helical Structures. Inorganic Chemistry, 2006, 45, 7032-7034.	1.9	89
23	Facile plasma-induced fabrication of fluorescent carbon dots toward high-performance white LEDs. Journal of Materials Science, 2013, 48, 6307-6311.	1.7	89
24	Facile fabrication of tunable colloidal photonic crystal hydrogel supraballs toward a colorimetric humidity sensor. Journal of Materials Chemistry C, 2013, 1, 4685.	2.7	88
25	One-step synthesis of yellow-emitting carbogenic dots toward white light-emitting diodes. Journal of Materials Science, 2013, 48, 2352-2357.	1.7	88
26	The Rapid and Largeâ€Scale Production of Carbon Quantum Dots and their Integration with Polymers. Angewandte Chemie - International Edition, 2021, 60, 8585-8595.	7.2	88
27	Structural and Magnetic Studies on Cyano-Bridged Rectangular Fe2M2 (M = Cu, Ni) Clusters. Inorganic Chemistry, 2006, 45, 10058-10065.	1.9	87
28	Magnetic-Directed Assembly from Janus Building Blocks to Multiplex Molecular-Analogue Photonic Crystal Structures. Journal of the American Chemical Society, 2016, 138, 566-573.	6.6	87
29	Yellowâ€Emissive Carbon Dots with High Solidâ€State Photoluminescence. Advanced Functional Materials, 2022, 32, .	7.8	84
30	Robust Mechanochromic Elastic Oneâ€Dimensional Photonic Hydrogels for Touch Sensing and Flexible Displays. Advanced Optical Materials, 2014, 2, 652-662.	3 . 6	83
31	One-Dimensional Azido-Bridged Chiral Metal Complexes with Ferromagnetic or Antiferromagnetic Interactions:  Syntheses, Structures, and Magnetic Studies. Inorganic Chemistry, 2005, 44, 9039-9045.	1.9	81
32	Enriched carbon dots/graphene microfibers towards high-performance micro-supercapacitors. Journal of Materials Chemistry A, 2018, 6, 14112-14119.	5 . 2	80
33	Tunable Janus colloidal photonic crystal supraballs with dual photonic band gaps. Journal of Materials Chemistry C, 2014, 2, 9431-9438.	2.7	71
34	Microâ€Gel Ensembles for Accelerated Healing of Chronic Wound via pH Regulation. Advanced Science, 2022, 9, .	5 . 6	69
35	Facile synthesis of red dual-emissive carbon dots for ratiometric fluorescence sensing and cellular imaging. Nanoscale, 2020, 12, 5494-5500.	2.8	68
36	Facile dicyandiamide-mediated fabrication of well-defined CuO hollow microspheres and their catalytic application. Materials Chemistry and Physics, 2010, 120, 296-301.	2.0	67

#	Article	IF	Citations
37	Synthesis of silica-based carbon dot/nanocrystal hybrids toward white LEDs. Journal of Materials Science, 2014, 49, 7391-7398.	1.7	62
38	Assembling chirality into magnetic nanowires: cyano-bridged iron(iii)–nickel(ii) chains exhibiting slow magnetization relaxation and ferroelectricity. Chemical Communications, 2009, , 6940.	2.2	61
39	A Releaseâ€Induced Response for the Rapid Recognition of Latent Fingerprints and Formation of Inkjetâ€Printed Patterns. Angewandte Chemie - International Edition, 2011, 50, 3706-3709.	7.2	61
40	Fast synthesis of versatile nanocrystal-embedded hydrogels toward the sensing of heavy metal ions and organoamines. Journal of Materials Chemistry, 2011, 21, 1124-1129.	6.7	57
41	Fiberâ€Spinningâ€Chemistry Method toward In Situ Generation of Highly Stable Halide Perovskite Nanocrystals. Advanced Science, 2019, 6, 1901694.	5.6	55
42	Advances in frontal polymerization strategy: From fundamentals to applications. Progress in Polymer Science, 2022, 127, 101514.	11.8	55
43	Reduced Graphene Oxide Membrane Induced Robust Structural Colors toward Personal Thermal Management. ACS Photonics, 2019, 6, 116-122.	3.2	54
44	Ferroelectric Heterobimetallic Clusters with Ferromagnetic Interactions. Inorganic Chemistry, 2008, 47, 7957-7959.	1.9	53
45	Syntheses, Structures, and Magnetic Properties of Cyano-Bridged Heterobimetallic Complexes Based on [Fe(bpca)(CN)3] Inorganic Chemistry, 2006, 45, 582-590.	1.9	52
46	Recognition of Latent Fingerprints and Ink-Free Printing Derived from Interfacial Segregation of Carbon Dots. ACS Applied Materials & Interfaces, 2018, 10, 39205-39213.	4.0	51
47	Facile access to poly(NMA-co-VCL) hydrogels via long range laser ignited frontal polymerization. Journal of Materials Chemistry A, 2013, 1, 7326.	5.2	50
48	Microfluidicâ€Spinningâ€Directed Microreactors Toward Generation of Multiple Nanocrystals Loaded Anisotropic Fluorescent Microfibers. Advanced Functional Materials, 2015, 25, 7253-7262.	7.8	49
49	Quantum-dot-embedded ionomer-derived films with ordered honeycomb structures via breath figures. Chemical Communications, 2010, 46, 7376.	2.2	48
50	Syntheses, Structures, and Electrochemical and Magnetic Properties of Rectangular Heterobimetallic Clusters Based on Tricyanometallic Building Blocks. European Journal of Inorganic Chemistry, 2008, 2008, 717-727.	1.0	45
51	Facile synthesis of fluorescent quantum dotâ€polymer nanocomposites via frontal polymerization. Journal of Polymer Science Part A, 2010, 48, 2170-2177.	2.5	45
52	Robust Self-Healing Hydrogels Assisted by Cross-Linked Nanofiber Networks. Scientific Reports, 2013, 3, 2811.	1.6	42
53	Microfluidic-Directed Hydrogel Fabrics Based on Interfibrillar Self-Healing Effects. Chemistry of Materials, 2018, 30, 8822-8828.	3.2	42
54	Versatile Hydrogel Ensembles with Macroscopic Multidimensions. Advanced Materials, 2018, 30, 1803475.	11,1	41

#	Article	IF	CITATIONS
55	Superhydrophobic Thermoplastic Polyurethane Films with Transparent/Fluorescent Performance. Langmuir, 2010, 26, 18454-18458.	1.6	39
56	Microarrays Formed by Microfluidic Spinning as Multidimensional Microreactors. Angewandte Chemie - International Edition, 2014, 53, 3988-3992.	7.2	39
57	Facile synthesis of <i>N</i> â€vinylimidazoleâ€based hydrogels via frontal polymerization and investigation of their performance on adsorption of copper ions. Journal of Polymer Science Part A, 2010, 48, 4005-4012.	2.5	38
58	Construction of Highly Luminescent CdTe/CdS@ZnS–SiO ₂ Quantum Dots as Conversion Materials toward Excellent Color-Rendering White-Light-Emitting Diodes. Industrial & Diodes amp; Engineering Chemistry Research, 2014, 53, 16763-16770.	1.8	38
59	Facile synthesis of amphiphilic gels by frontal freeâ€radical polymerization. Journal of Polymer Science Part A, 2010, 48, 823-831.	2.5	37
60	Multiple-structured nanocrystals towards bifunctional photoluminescent-superhydrophobic surfaces. Journal of Materials Chemistry, 2010, 20, 3863.	6.7	37
61	Design of Phosphor White Light Systems for High-Power Applications. ACS Photonics, 2016, 3, 2243-2248.	3.2	37
62	Multifunctional Hydrogels with Temperature, Ion, and Magnetocaloric Stimuliâ€Responsive Performances. Macromolecular Rapid Communications, 2016, 37, 759-768.	2.0	36
63	Microfluidicâ€Spinningâ€Directed Conductive Fibers toward Flexible Microâ€Supercapacitors. Macromolecular Materials and Engineering, 2018, 303, 1700664.	1.7	36
64	Facile Access to Wearable Device via Microfluidic Spinning of Robust and Aligned Fluorescent Microfibers. ACS Applied Materials & Samp; Interfaces, 2018, 10, 30785-30793.	4.0	35
65	<i>In situ</i> access to white lightâ€emitting fluorescent polymer nanocomposites via plasmaâ€ignited frontal polymerization. Journal of Polymer Science Part A, 2012, 50, 3736-3742.	2.5	33
66	Facile access to versatile hydrogels via interface-directed frontal polymerization derived from the magnetocaloric effect. Journal of Materials Chemistry A, 2015, 3, 17351-17358.	5.2	33
67	Multifunctional ionomer-derived honeycomb-patterned architectures and their performance in light enhancement of light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 4089.	6.7	32
68	Highly Enhanced Luminescence Performance of LEDs via Controllable Layerâ€Structured 3D Photonic Crystals and Photonic Crystal Beads. Small Methods, 2018, 2, 1800104.	4.6	32
69	Controllable Synthesis of New Polymerizable Macrosurfactants via CCTP and RAFT Techniques and Investigation of Their Performance in Emulsion Polymerization. Langmuir, 2010, 26, 1724-1733.	1.6	31
70	Facile Access to Graphene Oxide from Ferro-Induced Oxidation. Scientific Reports, 2016, 6, 17071.	1.6	31
71	Available Plasma-Ignited Frontal Polymerization Approach toward Facile Fabrication of Functional Polymer Hydrogels. Chemistry of Materials, 2010, 22, 5653-5659.	3.2	30
72	Dual photonic-bandgap optical films towards the generation of photonic crystal-derived 2-dimensional chemical codes. Chemical Communications, 2015, 51, 10528-10531.	2.2	30

#	Article	IF	Citations
73	Interfacial synthesis of SnSe quantum dots for sensitized solar cells. RSC Advances, 2015, 5, 2155-2158.	1.7	30
74	Facile fabrication of structure-tunable bead-shaped hybrid microfibers using a Rayleigh instability guiding strategy. Chemical Communications, 2015, 51, 17525-17528.	2.2	29
75	Dendrimer-induced colloids towards robust fluorescent photonic crystal films and high performance WLEDs. Journal of Materials Chemistry C, 2018, 6, 8187-8193.	2.7	28
76	Fabrication of Reversible Phase Transition Polymer Gels toward Metal Ion Sensing. Macromolecules, 2014, 47, 1875-1881.	2.2	26
77	Construction of Hydrogen-Bond-Assisted Crack-Free Photonic Crystal Films and Their Performance on Fluorescence Enhancement Effect. Macromolecular Materials and Engineering, 2017, 302, 1700013.	1.7	26
78	Fast fabrication of superabsorbent polyampholytic nanocomposite hydrogels via plasma-ignited frontal polymerization. Journal of Polymer Science Part A, 2014, 52, 912-920.	2.5	24
79	Microfluidic printing directing photonic crystal bead 2D code patterns. Journal of Materials Chemistry C, 2018, 6, 2336-2341.	2.7	24
80	Construction of Ag-doped Zn–In–S quantum dots toward white LEDs and 3D luminescent patterning. RSC Advances, 2016, 6, 47616-47622.	1.7	23
81	Cu–In–S/ZnS Quantum Dots Embedded in Polyvinylpyrrolidone (PVP) Solids for White Light-Emitting Diodes (LEDs). Industrial & Engineering Chemistry Research, 2016, 55, 11700-11705.	1.8	23
82	Fabrication of colorful colloidal photonic crystal fibers via a microfluidic spinning technique. Materials Letters, 2019, 242, 179-182.	1.3	23
83	Fabrication of amphiphilic quantum dots towards high-colour-quality light-emitting devices. Journal of Materials Chemistry C, 2019, 7, 4244-4249.	2.7	23
84	Controllable Fabrication of Nanocrystal-Loaded Photonic Crystals with a Polymerizable Macromonomer via the CCTP Technique. Langmuir, 2010, 26, 10657-10662.	1.6	22
85	Versatile dendrimer-derived nanocrystal microreactors towards fluorescence colloidal photonic crystals. Journal of Materials Chemistry C, 2014, 2, 3610-3616.	2.7	22
86	Fibrous Nanoreactors from Microfluidic Blow Spinning for Mass Production of Highly Stable Ligandâ€Free Perovskite Quantum Dots. Angewandte Chemie - International Edition, 2022, 61, .	7.2	21
87	InÂsitu synthesis of transparent fluorescent ZnS–polymer nanocomposite hybrids through catalytic chain transfer polymerization technique. Journal of Materials Science, 2009, 44, 3413-3419.	1.7	20
88	Heterometallic Complexes Based on the Mixed Bridging Ligands of Tricyanometalate and Terephthalate: Syntheses, Structures, and Magnetic Properties. Inorganic Chemistry, 2009, 48, 9166-9173.	1.9	20
89	Macromonomer-induced CdTe quantum dots toward multicolor fluorescent patterns and white LEDs. RSC Advances, 2012, 2, 9005.	1.7	20
90	High performance of interpenetrating polymer network hydrogels induced by frontal polymerization. Colloid and Polymer Science, 2013, 291, 1871-1879.	1.0	20

#	Article	IF	Citations
91	Anisotropic Biphase Frontal Polymerization toward <i>in Situ</i> i> Generation of Dual-Component Polymers. Macromolecules, 2015, 48, 5543-5549.	2.2	19
92	Facile access to poly(DMAEMA-co-AA) hydrogels via infrared laser-ignited frontal polymerization and their polymerization in the horizontal direction. RSC Advances, 2015, 5, 30514-30521.	1.7	19
93	Red dual-emissive carbon dots for ratiometric sensing of veterinary drugs. Journal of Luminescence, 2021, 236, 118092.	1.5	19
94	A facile pathway for the fast synthesis of colloidal crystalâ€loaded hydrogels via frontal polymerization. Journal of Polymer Science Part A, 2011, 49, 3121-3128.	2.5	18
95	Rapid synthesis of poly(HPAâ€∢i>coà€VeoVa 10) amphiphilic gels toward removal of toxic solvents via plasmaâ€ignited frontal polymerization. Journal of Polymer Science Part A, 2011, 49, 5217-5226.	2.5	18
96	Ultrafast mechano-responsive photonic hydrogel towards multicolor displays via the pressure sensation. Materials Letters, 2017, 189, 321-324.	1.3	18
97	Facile synthesis, high fluorescence and flame retardancy of carbon dots. Journal of Materials Science and Technology, 2022, 104, 163-171.	5.6	18
98	Novel Heterometallic Feâ^'Ru ₂ â^'Fe Arrays via "Complex of Complexes―Approach. Inorganic Chemistry, 2008, 47, 9716-9722.	1.9	17
99	Nitrogen-doped carbon dots derived from polyamindoamine dendrimer. RSC Advances, 2016, 6, 59702-59707.	1.7	17
100	Quantum Dot Color-Converting Solids Operating Efficiently in the kW/cm ² Regime. Chemistry of Materials, 2017, 29, 5104-5112.	3.2	17
101	Generation of a carbon dots/ammonium persulfate redox initiator couple for free radical frontal polymerization. Polymer Chemistry, 2018, 9, 420-427.	1.9	17
102	Host-guest supramolecular assembly directing beta-cyclodextrin based nanocrystals towards their robust performances. Journal of Hazardous Materials, 2019, 361, 329-337.	6.5	17
103	Frontal Polymerization-Oriented Self-Healing Hydrogels and Applications toward Temperature-Triggered Actuators. Industrial & Engineering Chemistry Research, 2019, 58, 3885-3892.	1.8	17
104	Construction of triple non-covalent interaction-based ultra-strong self-healing polymeric gels <i>via</i> frontal polymerization. Journal of Materials Chemistry C, 2020, 8, 14083-14091.	2.7	17
105	Facile synthesis of 4-vinylpyridine-based hydrogels via laser-ignited frontal polymerization and their performance on ion removal. Colloid and Polymer Science, 2014, 292, 2529-2537.	1.0	16
106	Fabrication of highly fluorescent CdSe quantum dots via solvent-free microfluidic spinning microreactors. RSC Advances, 2015, 5, 107804-107810.	1.7	16
107	Facile construction of dual bandgap optical encoding materials with PS@P(HEMA-co-AA)/SiO2-TMPTA colloidal photonic crystals. Optical Materials, 2016, 57, 107-113.	1.7	16
108	Synthesis, structure and physical properties of the one-dimensional chain complex of tetrathiafulvalene carboxylate. Science in China Series B: Chemistry, 2009, 52, 1596-1601.	0.8	15

#	Article	IF	CITATIONS
109	One-Step Facile Synthesis of Fluorescent Carbon Dots via Magnetic Hyperthermia Method. Industrial & Lamp; Engineering Chemistry Research, 2020, 59, 4968-4976.	1.8	15
110	Carbon dots embedded nanofiber films: Large-scale fabrication and enhanced mechanical properties. Chinese Chemical Letters, 2022, 33, 304-307.	4.8	15
111	Interfacial Self-assembly of Ni _{<i>x</i>} Cd _{1â€"<i>x</i>} S/ODA Hybrids with Photoluminescent and Superhydrophobic Performance. Industrial & Engineering Chemistry Research, 2013, 52, 11590-11596.	1.8	14
112	Facile synthesis of poly(DMCâ€ <i>co</i> â€HPA) hydrogels via infrared laser ignited frontal polymerization and their adsorption–desorption switching performance. Journal of Polymer Science Part A, 2015, 53, 2085-2093.	2.5	14
113	Interface-spawned NiSe quantum dots: preparation, photoluminescence properties and applications. Journal of Materials Chemistry C, 2015, 3, 473-478.	2.7	14
114	Facile synthesis of selfâ€healing gel via magnetocaloric bottomâ€ignited frontal polymerization. Journal of Polymer Science Part A, 2017, 55, 2585-2593.	2.5	14
115	Frontal polymerization for smart intrinsic selfâ€healing hydrogels and its integration with microfluidics. Journal of Polymer Science Part A, 2018, 56, 1412-1423.	2.5	14
116	Hydrophobic Poly(tert â€butyl acrylate) Photonic Crystals towards Robust Energyâ€Saving Performance. Angewandte Chemie, 2019, 131, 13690-13698.	1.6	14
117	Synthesis, structures and magnetic properties of nickel <i>bis</i> (dithiolene) complexes with [Fe(qsal) ₂] ⁺ . Journal of Coordination Chemistry, 2009, 62, 1544-1552.	0.8	13
118	Fabrication of quantum dot-based photonic materials from small to large via interfacial self-assembly. Journal of Materials Chemistry, 2011, 21, 8496.	6.7	13
119	Quantum-dot-embedded polymeric fiber films with photoluminescence and superhydrophobicity. Materials Letters, 2013, 99, 54-56.	1.3	13
120	In situ access to fluorescent dual-component polymers towards optoelectronic devices via inhomogeneous biphase frontal polymerization. RSC Advances, 2015, 5, 102294-102299.	1.7	13
121	Rapid preparation of auto-healing gels with actuating behaviour. Soft Matter, 2019, 15, 2517-2525.	1.2	13
122	Microfluidic synthesis of robust carbon dots-functionalized photonic crystals. Chemical Engineering Journal, 2021, 405, 126539.	6.6	13
123	Syntheses, structures, and magnetic properties of heterobimetallic complexes based on tetracyanometallic building blocks. Inorganica Chimica Acta, 2008, 361, 2901-2908.	1.2	12
124	Syntheses, structures and magnetic properties of heterobimetallic complexes based on a new tetracyanometalate precursor. Inorganica Chimica Acta, 2009, 362, 5195-5202.	1.2	12
125	Herbages-derived fluorescent carbon dots and CdTe/carbon ensembles for patterning. Journal of Materials Science, 2016, 51, 8108-8115.	1.7	11
126	Ultrasensitive responsive photonic crystal films derived from the assembly between similarly charged colloids and substrates towards trace electrolyte sensing. Journal of Materials Chemistry C, 2016, 4, 6750-6755.	2.7	11

#	Article	IF	Citations
127	Syntheses, structures, and magnetic properties of heterobimetallic Fe2IIIMII (M=Cu, Mn) chains based on tetracyanometallic building block. Inorganica Chimica Acta, 2009, 362, 1485-1490.	1.2	10
128	Dually crosslinked self-healing hydrogels originating from cell-enhanced effect. Journal of Materials Chemistry B, 2017, 5, 3816-3822.	2.9	10
129	Magnetothermal microfluidic-directed synthesis of quantum dots. Journal of Materials Chemistry C, 2020, 8, 6358-6363.	2.7	10
130	pH-Controlled interfacial assembly and disassembly of highly luminescent blue emitting Zn Cd1â^'S/dodecylamine complexes. Journal of Colloid and Interface Science, 2010, 349, 626-631.	5.0	9
131	Encodable multiple-fluorescence CdTe@carbon nanoparticles from nanocrystal/colloidal crystal guest–host ensembles. Nanotechnology, 2013, 24, 135602.	1.3	9
132	Preparation of heterostructure quantum dots towards wide-colour-gamut display. Materials Letters, 2019, 254, 171-174.	1.3	9
133	The Rapid and Largeâ€Scale Production of Carbon Quantum Dots and their Integration with Polymers. Angewandte Chemie, 2021, 133, 8668-8678.	1.6	9
134	Rapid visualized hydrophobic-force-driving self-assembly towards brilliant photonic crystals. Chemical Engineering Journal, 2021, 420, 127582.	6.6	9
135	Mild bottom-up synthesis of carbon dots with temperature-dependent fluorescence. Journal of Luminescence, 2021, 238, 118311.	1.5	9
136	Controllable fabrication of nanocrystal-polymer hybrids via the catalytic chain transfer polymerization process. Colloid and Polymer Science, 2009, 287, 829-837.	1.0	8
137	Chemical synthesis and optical properties of CdS–poly(lactic acid) nanocomposites and their transparent fluorescent films. Colloid and Polymer Science, 2011, 289, 395-400.	1.0	8
138	Electrospun fluorescein-embedded nanofibers towards fingerprint recognition and luminescent patterns. RSC Advances, 2013, 3, 19403.	1.7	8
139	Supramolecular Gels: Robust Self-Healing Host-Guest Gels from Magnetocaloric Radical Polymerization (Adv. Funct. Mater. 9/2014). Advanced Functional Materials, 2014, 24, 1234-1234.	7.8	8
140	Highly Crystallized Brilliant Polymeric Photonic Crystals via Repulsionâ€Induced Precipitation Assembly toward Multiresponsive Colorimetric Films. Macromolecular Materials and Engineering, 2016, 301, 1363-1373.	1.7	8
141	Microfluidic fluorescent platform for rapid and visual detection of veterinary drugs. RSC Advances, 2022, 12, 8485-8491.	1.7	8
142	In-situ synthesis of stable perovskite quantum dots in core-shell nanofibers via microfluidic electrospinning. Chinese Chemical Letters, 2023, 34, 107384.	4.8	8
143	Fast access to core/shell/shell CdTe/CdSe/ZnO quantum dots via magnetic hyperthermia method. AICHE Journal, 2016, 62, 2614-2621.	1.8	7
144	Facile fabrication of fluorescent-superhydrophobic bifunctional ligand-free quantum dots. Colloid and Polymer Science, 2013, 291, 717-723.	1.0	6

#	Article	IF	CITATIONS
145	Rapid Fabrication of Patterned Gels via Microchannelâ€Conformal Frontal Polymerization. Macromolecular Rapid Communications, 2021, 42, 2100421.	2.0	6
146	Carbon Dot-Functionalized Colloidal Particles for Patterning and Controllable Layer-Structured Photonic Crystals Construction. ACS Applied Polymer Materials, 2021, 3, 6130-6137.	2.0	6
147	Rapid Preparation of Dual Cross-Linked Mechanical Strengthening Hydrogels via Frontal Polymerization for use as Shape Deformable Actuators. ACS Applied Polymer Materials, 2022, 4, 1457-1465.	2.0	6
148	Facile access to versatile N-vinylimidazole-based artificial tongue-like polymer gels. Soft Matter, 2013, 9, 3809.	1.2	5
149	Electrostatic fabrication of RGO-g-SSS/CdTe graphene/quantum dot nanocomposites with enhanced optoelectronic properties. RSC Advances, 2016, 6, 65443-65449.	1.7	5
150	New Multichannel Frontal Polymerization Strategy for Scaled-up Production of Robust Hydrogels. Industrial & Engineering Chemistry Research, 2018, 57, 3083-3090.	1.8	5
151	Fibrous Nanoreactors from Microfluidic Blow Spinning for Mass Production of Highly Stable Ligandâ€Free Perovskite Quantum Dots. Angewandte Chemie, 2022, 134, .	1.6	5
152	Facile fabrication of CdTe/montmorillonite nanocomposite films with stable photoluminescence properties. Materials Letters, 2011, 65, 1669-1671.	1.3	4
153	Synthesis of fluorescent carbon dots from one-step pyrolysis of frontal-polymerized poly(acrylamide-co-4-vinylpyridine). Applied Physics A: Materials Science and Processing, 2014, 117, 1583-1588.	1.1	4
154	Synthesis of versatile poly(PMMAâ€bâ€VI) macromonomerâ€based hydrogels via infrared laser ignited frontal polymerization. Journal of Polymer Science Part A, 2016, 54, 1210-1221.	2.5	4
155	Facile synthesis of self-healing gels via frontal polymerization toward acid–base regulatable wound dressing. Journal of Materials Science, 2022, 57, 12971-12984.	1.7	4
156	Self-Replication Fabrication of Ligand-Free CdSe Quantum Dots on a Nanofiber Microreactor via a Solid–Liquid Interfacial Method. Industrial & Engineering Chemistry Research, 2014, 53, 8753-8758.	1.8	3
157	New insights into the phosphine-free synthesis of ultrasmall Cu2â^'xSe nanocrystals at the liquidâ€"liquid interface. RSC Advances, 2015, 5, 90705-90711.	1.7	3
158	Autonomous conveyer gel driven by frontal polymerization. Journal of Polymer Science Part A, 2016, 54, 1323-1331.	2.5	3
159	Laser-ignited frontal polymerization of shape-controllable poly(VI-co-AM) hydrogels based on 3D templates toward adsorption of heavy metal ions. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	3
160	Macroscopic Selfâ€Assembly: Versatile Hydrogel Ensembles with Macroscopic Multidimensions (Adv.) Tj ETQq0	0 0 rgBT /	Overlock 10 T
161	Phase Transfer Mediated Self-Assembly of CdTe–Polymer Nanohybrids for Uniform Fluorescent Films. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 570-575.	1.9	2
162	Electrochromic performances and photoluminescence characteristics of versatile N-vinylimidazole-based hybrid hydrogels. Colloid and Polymer Science, 2012, 290, 371-377.	1.0	2

#	Article	IF	CITATIONS
163	Fabrication of superhydrophobic surface from binary micro-/nano-structure of mullite-whisk-based films. Applied Physics A: Materials Science and Processing, 2013, 113, 591-596.	1.1	2
164	Microfluidic Spinning: Microfluidic-Spinning-Directed Microreactors Toward Generation of Multiple Nanocrystals Loaded Anisotropic Fluorescent Microfibers (Adv. Funct. Mater. 47/2015). Advanced Functional Materials, 2015, 25, 7396-7396.	7.8	2
165	Infrared laserâ€ignited horizontal frontal polymerization of versatile unsaturated polyester resins. Journal of Applied Polymer Science, 2018, 135, 45935.	1.3	2
166	Constructing honeycomb architectures from polymer carbon dot composites for luminous efficacy enhancement of LEDs. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	2
167	Microfluidic-directed assembly of uniform fluorescent supraballs from CdTe nanocrystals-loaded acrylosilane microemulsion. Colloid and Polymer Science, 2013, 291, 2147-2154.	1.0	1
168	Versatile hydrogel-based nanocrystal microreactors towards uniform fluorescent photonic crystal supraballs. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	1
169	Hydrogels: Robust Mechanochromic Elastic One-Dimensional Photonic Hydrogels for Touch Sensing and Flexible Displays (Advanced Optical Materials 7/2014). Advanced Optical Materials, 2014, 2, 651-651.	3.6	1
170	In situ preparation of graphene oxide–CdTe nanocomposites with interesting optical properties. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	1
171	Wearable Devices: Highâ€Performance Wearable Microâ€Supercapacitors Based on Microfluidicâ€Directed Nitrogenâ€Doped Graphene Fiber Electrodes (Adv. Funct. Mater. 36/2017). Advanced Functional Materials, 2017, 27, .	7.8	0