Marc T Nishimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9415399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shared TIR enzymatic functions regulate cell death and immunity across the tree of life. Science, 2022, 377, .	6.0	59
2	Arabidopsis ADR1 helper NLR immune receptors localize and function at the plasma membrane in a phospholipid dependent manner. New Phytologist, 2021, 232, 2440-2456.	3.5	36
3	Reinventing the wheel with a synthetic plant inflammasome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20357-20359.	3.3	4
4	mRNA localization is linked to translation regulation in the <i>Caenorhabditis elegans</i> germ lineage. Development (Cambridge), 2020, 147, .	1.2	25
5	Enzymatic Functions for Toll/Interleukin-1 Receptor Domain Proteins in the Plant Immune System. Frontiers in Genetics, 2020, 11, 539.	1.1	43
6	A Species-Wide Inventory of NLR Genes and Alleles in Arabidopsis thaliana. Cell, 2019, 178, 1260-1272.e14.	13.5	265
7	TIR domains of plant immune receptors are NAD ⁺ -cleaving enzymes that promote cell death. Science, 2019, 365, 799-803.	6.0	337
8	Concerted Action of Evolutionarily Ancient and Novel SNARE Complexes in Flowering-Plant Cytokinesis. Developmental Cell, 2018, 44, 500-511.e4.	3.1	35
9	Structural, Functional, and Genomic Diversity of Plant NLR Proteins: An Evolved Resource for Rational Engineering of Plant Immunity. Annual Review of Phytopathology, 2018, 56, 243-267.	3.5	152
10	TIR-only protein RBA1 recognizes a pathogen effector to regulate cell death in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2053-E2062.	3.3	146
11	A Bacterial Type III Effector Targets the Master Regulator of Salicylic Acid Signaling, NPR1, to Subvert Plant Immunity. Cell Host and Microbe, 2017, 22, 777-788.e7.	5.1	122
12	Structural insights into plant NLR immune receptor function. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12619-12621.	3.3	21
13	Genome-Wide Assessment of Efficiency and Specificity in CRISPR/Cas9 Mediated Multiple Site Targeting in Arabidopsis. PLoS ONE, 2016, 11, e0162169.	1.1	178
14	Treasure Your Exceptions: Unusual Domains in Immune Receptors Reveal Host Virulence Targets. Cell, 2015, 161, 957-960.	13.5	32
15	A Truncated NLR Protein, TIR-NBS2, Is Required for Activated Defense Responses in the exo70B1 Mutant. PLoS Genetics, 2015, 11, e1004945.	1.5	127
16	Variable Suites of Non-effector Genes Are Co-regulated in the Type III Secretion Virulence Regulon across the Pseudomonas syringae Phylogeny. PLoS Pathogens, 2014, 10, e1003807.	2.1	39
17	<i>Pseudomonas syringae</i> CC1557: A Highly Virulent Strain With an Unusually Small Type III Effector Repertoire That Includes a Novel Effector. Molecular Plant-Microbe Interactions, 2014, 27, 923-932.	1.4	42
18	Paired Plant Immune Receptors. Science, 2014, 344, 267-268.	6.0	14

MARC T NISHIMURA

#	Article	IF	CITATIONS
19	The Molecular Basis of Host Specialization in Bean Pathovars of <i>Pseudomonas syringae</i> . Molecular Plant-Microbe Interactions, 2012, 25, 877-888.	1.4	83
20	A new eye on NLR proteins: focused on clarity or diffused by complexity?. Current Opinion in Immunology, 2012, 24, 41-50.	2.4	138
21	Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network. Science, 2011, 333, 596-601.	6.0	776
22	ATC2, an autophagyâ€related protein, negatively affects powdery mildew resistance and mildewâ€induced cell death in Arabidopsis. Plant Journal, 2011, 68, 74-87.	2.8	140
23	Dynamic Evolution of Pathogenicity Revealed by Sequencing and Comparative Genomics of 19 Pseudomonas syringae Isolates. PLoS Pathogens, 2011, 7, e1002132.	2.1	413
24	Arabidopsis and the plant immune system. Plant Journal, 2010, 61, 1053-1066.	2.8	168
25	De novo assembly using low-coverage short read sequence data from the rice pathogen <i>Pseudomonas syringae</i> pv. <i>oryzae</i> . Genome Research, 2009, 19, 294-305.	2.4	129
26	NPR1 in Plant Defense: It's Not over 'til It's Turned over. Cell, 2009, 137, 804-806.	13.5	66
27	Loss of a Callose Synthase Results in Salicylic Acid-Dependent Disease Resistance. Science, 2003, 301, 969-972.	6.0	615
28	PLANT BIOLOGY: Enhanced: Resisting Attack. Science, 2002, 295, 2032-2033.	6.0	16
29	Map positions of 47 Arabidopsis sequences with sequence similarity to disease resistance genes. Plant Journal, 1997, 12, 1197-1211.	2.8	102