
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9415379/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP. Astronomical Journal, 2012, 144, 4.	1.9	1,391
2	A CATALOG OF BULGE+DISK DECOMPOSITIONS AND UPDATED PHOTOMETRY FOR 1.12 MILLION GALAXIES IN THE SLOAN DIGITAL SKY SURVEY. Astrophysical Journal, Supplement Series, 2011, 196, 11.	3.0	501
3	The remnants of galaxy formation from a panoramic survey of the region around M31. Nature, 2009, 461, 66-69.	13.7	497
4	A vast, thin plane of corotating dwarf galaxies orbiting the Andromeda galaxy. Nature, 2013, 493, 62-65.	13.7	396
5	GALAXY PAIRS IN THE SLOAN DIGITAL SKY SURVEY. I. STAR FORMATION, ACTIVE GALACTIC NUCLEUS FRACTION, AND THE LUMINOSITY/MASS-METALLICITY RELATION. Astronomical Journal, 2008, 135, 1877-1899.	1.9	389
6	THE NEXT GENERATION VIRGO CLUSTER SURVEY (NGVS). I. INTRODUCTION TO THE SURVEY*. Astrophysical Journal, Supplement Series, 2012, 200, 4.	3.0	306
7	The Tidal Evolution of Local Group Dwarf Spheroidals. Astrophysical Journal, 2008, 673, 226-240.	1.6	297
8	Clues to the Origin of the Mass-Metallicity Relation: Dependence on Star Formation Rate and Galaxy Size. Astrophysical Journal, 2008, 672, L107-L110.	1.6	258
9	THE LARGE-SCALE STRUCTURE OF THE HALO OF THE ANDROMEDA GALAXY. I. GLOBAL STELLAR DENSITY, MORPHOLOGY AND METALLICITY PROPERTIES. Astrophysical Journal, 2014, 780, 128.	1.6	197
10	A KINEMATIC STUDY OF THE ANDROMEDA DWARF SPHEROIDAL SYSTEM. Astrophysical Journal, 2013, 768, 172.	1.6	157
11	The Pristine survey – I. Mining the Galaxy for the most metal-poor stars. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2587-2604.	1.6	156
12	The Cold Dark Matter Halos of Local Group Dwarf Spheroidals. Astrophysical Journal, 2008, 672, 904-913.	1.6	150
13	PAndAS' PROGENY: EXTENDING THE M31 DWARF GALAXY CABAL. Astrophysical Journal, 2011, 732, 76.	1.6	147
14	Galaxy pairs in the Sloan Digital Sky Survey - II. The effect of environment on interactions. Monthly Notices of the Royal Astronomical Society, 2010, 407, 1514-1528.	1.6	143
15	The impact of dark matter cusps and cores on the satellite galaxy population around spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	135
16	Binarity in carbon-enhanced metal-poor starsâ~ Monthly Notices of the Royal Astronomical Society, 2014, 441, 1217-1229.	1.6	135
17	A Trio of New Local Group Galaxies with Extreme Properties. Astrophysical Journal, 2008, 688, 1009-1020.	1.6	121
18	Galaxy pairs in the Sloan Digital Sky Survey - III. Evidence of induced star formation from optical colours. Monthly Notices of the Royal Astronomical Society, 2011, 412, 591-606.	1.6	120

#	Article	IF	CITATIONS
19	PAndAS' CUBS: DISCOVERY OF TWO NEW DWARF GALAXIES IN THE SURROUNDINGS OF THE ANDROMEDA AND TRIANGULUM GALAXIES. Astrophysical Journal, 2009, 705, 758-765.	1.6	118
20	The Large-scale Structure of the Halo of the Andromeda Galaxy. II. Hierarchical Structure in the Pan-Andromeda Archaeological Survey. Astrophysical Journal, 2018, 868, 55.	1.6	113
21	A definitive merger-AGN connection at z â^¼ 0 with CFIS: mergers have an excess of AGN and AGN hosts are more frequently disturbed. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2491-2504.	1.6	107
22	THE SIGNATURE OF GALACTIC TIDES IN LOCAL GROUP DWARF SPHEROIDALS. Astrophysical Journal, 2009, 698, 222-232.	1.6	104
23	THE NEXT GENERATION VIRGO CLUSTER SURVEY. VIII. THE SPATIAL DISTRIBUTION OF GLOBULAR CLUSTERS IN THE VIRGO CLUSTER. Astrophysical Journal, 2014, 794, 103.	1.6	104
24	THE PAndAS VIEW OF THE ANDROMEDA SATELLITE SYSTEM. II. DETAILED PROPERTIES OF 23 M31 DWARF SPHEROIDAL GALAXIES. Astrophysical Journal, 2016, 833, 167.	1.6	102
25	The mass-metallicity relation in galaxy clusters: the relative importance of cluster membership versus local environment. Monthly Notices of the Royal Astronomical Society, 2009, 396, 1257-1272.	1.6	91
26	THE RESOLVED STRUCTURE AND DYNAMICS OF AN ISOLATED DWARF GALAXY: A VLT AND KECK SPECTROSCOPIC SURVEY OF WLM. Astrophysical Journal, 2012, 750, 33.	1.6	91
27	THE PAndAS VIEW OF THE ANDROMEDA SATELLITE SYSTEM. I. A BAYESIAN SEARCH FOR DWARF GALAXIES USING SPATIAL AND COLOR-MAGNITUDE INFORMATION. Astrophysical Journal, 2013, 776, 80.	1.6	83
28	THE PAndAS FIELD OF STREAMS: STELLAR STRUCTURES IN THE MILKY WAY HALO TOWARD ANDROMEDA AND TRIANGULUM. Astrophysical Journal, 2014, 787, 19.	1.6	81
29	REVISITING THE INFLUENCE OF UNIDENTIFIED BINARIES ON VELOCITY DISPERSION MEASUREMENTS IN ULTRA-FAINT STELLAR SYSTEMS. Astrophysical Journal Letters, 2010, 722, L209-L214.	3.0	79
30	On the Formation of Extended Galactic Disks by Tidally Disrupted Dwarf Galaxies. Astrophysical Journal, 2006, 650, L33-L36.	1.6	78
31	A dynamical model of the local cosmic expansion. Monthly Notices of the Royal Astronomical Society, 2014, 443, 2204-2222.	1.6	77
32	Compact groups in theory and practice - III. Compact groups of galaxies in the Sixth Data Release of the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 2009, 395, 255-268.	1.6	75
33	THE COMPARATIVE CHEMICAL EVOLUTION OF AN ISOLATED DWARF GALAXY: A VLT AND KECK SPECTROSCOPIC SURVEY OF WLM. Astrophysical Journal, 2013, 767, 131.	1.6	72
34	THE MASSES OF LOCAL GROUP DWARF SPHEROIDAL GALAXIES: THE DEATH OF THE UNIVERSAL MASS PROFILE. Astrophysical Journal, 2014, 783, 7.	1.6	71
35	THE NEXT GENERATION VIRGO CLUSTER SURVEY-INFRARED (NGVS-IR). I. A NEW NEAR-ULTRAVIOLET, OPTICAL, AND NEAR-INFRARED GLOBULAR CLUSTER SELECTION TOOL. Astrophysical Journal, Supplement Series, 2014, 210, 4.	3.0	70
36	THE NEXT GENERATION VIRGO CLUSTER SURVEY (NGVS). XIII. THE LUMINOSITY AND MASS FUNCTION OF GALAXIES IN THE CORE OF THE VIRGO CLUSTER AND THE CONTRIBUTION FROM DISRUPTED SATELLITES*. Astrophysical Journal, 2016, 824, 10.	1.6	65

#	Article	IF	CITATIONS
37	The ISLAndS Project. II. The Lifetime Star Formation Histories of Six Andromeda dSphs*. Astrophysical Journal, 2017, 837, 102.	1.6	65
38	The Stellar Halo and Outer Disk of M33. Astrophysical Journal, 2006, 647, L25-L28.	1.6	62
39	The Canada–France Imaging Survey: First Results from the u-Band Component. Astrophysical Journal, 2017, 848, 128.	1.6	62
40	The nature and origin of substructure in the outskirts of M31 – II. Detailed star formation historiesâ~ Monthly Notices of the Royal Astronomical Society, 2015, 446, 2789-2801.	1.6	60
41	DELAYED STAR FORMATION IN ISOLATED DWARF GALAXIES: <i>HUBBLE SPACE TELESCOPE</i> STAR FORMATION HISTORY OF THE AQUARIUS DWARF IRREGULAR. Astrophysical Journal, 2014, 795, 54.	1.6	56
42	Revised and New Proper Motions for Confirmed and Candidate Milky Way Dwarf Galaxies. Astronomical Journal, 2020, 160, 124.	1.9	56
43	THE PHOTOMETRIC PROPERTIES OF A VAST STELLAR SUBSTRUCTURE IN THE OUTSKIRTS OF M33. Astrophysical Journal, 2010, 723, 1038-1052.	1.6	55
44	The star formation history and dust content in the far outer disc of M31â~ Monthly Notices of the Royal Astronomical Society, 2012, 420, 2625-2643.	1.6	54
45	The orbital ellipticity of satellite galaxies and the mass of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2014, 437, 959-967.	1.6	52
46	PAndAS IN THE MIST: THE STELLAR AND GASEOUS MASS WITHIN THE HALOS OF M31 AND M33. Astrophysical Journal, 2013, 763, 4.	1.6	50
47	The Pristine survey IV: approaching the Galactic metallicity floor with the discovery of an ultra-metal-poor star. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3838-3852.	1.6	50
48	A Keck DEIMOS Kinematic Study of Andromeda IX: Dark Matter on the Smallest Galactic Scales. Astrophysical Journal, 2005, 632, L87-L90.	1.6	47
49	The Canada–France Imaging Survey: Reconstructing the Milky Way Star Formation History from Its White Dwarf Population. Astrophysical Journal, 2019, 887, 148.	1.6	46
50	Ram Pressure Stripping of an Isolated Local Group Dwarf Galaxy: Evidence for an Intragroup Medium. Astrophysical Journal, 2007, 671, L33-L36.	1.6	45
51	Updated Proper Motions for Local Group Dwarf Galaxies Using Gaia Early Data Release 3. Research Notes of the AAS, 2020, 4, 229.	0.3	45
52	The stellar content of the isolated transition dwarf galaxy DDO210. Monthly Notices of the Royal Astronomical Society, 2006, 373, 715-728.	1.6	43
53	COMPARING THE OBSERVABLE PROPERTIES OF DWARF GALAXIES ON AND OFF THE ANDROMEDA PLANE. Astrophysical Journal Letters, 2015, 799, L13.	3.0	41
54	The Binary Fraction of Stars in Dwarf Galaxies: The Cases of Draco and Ursa Minor. Astronomical Journal, 2018, 156, 257.	1.9	39

#	Article	IF	CITATIONS
55	Compact groups in theory and practice - I. The spatial properties of compact groups. Monthly Notices of the Royal Astronomical Society, 2008, 387, 1281-1290.	1.6	38
56	STELLAR METALLICITIES AND KINEMATICS IN A GAS-RICH DWARF GALAXY: FIRST CALCIUM TRIPLET SPECTROSCOPY OF RED GIANT BRANCH STARS IN WLM. Astrophysical Journal, 2009, 699, 1-14.	1.6	35
57	COMPARING M31 AND MILKY WAY SATELLITES: THE EXTENDED STAR FORMATION HISTORIES OF ANDROMEDA II AND ANDROMEDA XVI. Astrophysical Journal, 2014, 789, 24.	1.6	35
58	The spatially-resolved star formation history of the M31 outer disc. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 453, L113-L117.	1.2	34
59	THE M33 GLOBULAR CLUSTER SYSTEM WITH PAndAS DATA: THE LAST OUTER HALO CLUSTER?. Astrophysical Journal, 2011, 730, 112.	1.6	33
60	Galactic tides and the shape and orientation of dwarf galaxy satellites. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1112-1125.	1.6	32
61	The Binary Fraction of Stars in Dwarf Galaxies: The Case of Leo II. Astronomical Journal, 2017, 153, 254.	1.9	32
62	Comparing the Quenching Times of Faint M31 and Milky Way Satellite Galaxies. Astrophysical Journal Letters, 2019, 885, L8.	3.0	30
63	The ISLAnds Project. III. Variable Stars in Six Andromeda Dwarf Spheroidal Galaxies*. Astrophysical Journal, 2017, 850, 137.	1.6	28
64	Two major accretion epochs in M31 from two distinct populations of globular clusters. Nature, 2019, 574, 69-71.	13.7	28
65	DENSITY VARIATIONS IN THE NW STAR STREAM OF M31. Astrophysical Journal, 2011, 731, 124.	1.6	26
66	THE ISLANDS PROJECT. I. ANDROMEDA XVI, AN EXTREMELY LOW MASS GALAXY NOT QUENCHED BY REIONIZATION*. Astrophysical Journal, 2016, 819, 147.	1.6	26
67	Multiple dynamical components in Local Group dwarf spheroidals. Monthly Notices of the Royal Astronomical Society: Letters, 2007, 380, L75-L79.	1.2	25
68	Compact groups in theory and practice - IV. The connection to large-scale structure. Monthly Notices of the Royal Astronomical Society, 2011, 418, 1409-1422.	1.6	25
69	The survey of planetary nebulae in Andromeda (M 31). Astronomy and Astrophysics, 2019, 624, A132.	2.1	25
70	Galaxy pairs in the Local Group. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 431, L73-L77.	1.2	24
71	A Rogues' Gallery of Andromeda's Dwarf Galaxies. I. A Predominance of Red Horizontal Branches. Astrophysical Journal, 2017, 850, 16.	1.6	24
72	A-type stars in the Canada–France Imaging Survey I. The stellar halo of the Milky Way traced to large radius by blue horizontal branch stars. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5223-5235.	1.6	24

#	Article	IF	CITATIONS
73	The survey of planetary nebulae in Andromeda (M 31). Astronomy and Astrophysics, 2019, 631, A56.	2.1	23
74	A stellar stream remnant of a globular cluster below the metallicity floor. Nature, 2022, 601, 45-48.	13.7	22
75	Star formation at the edge of the Local Group: a rising star formation history in the isolated galaxy WLM. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5538-5550.	1.6	21
76	The Hidden Past of M92: Detection and Characterization of a Newly Formed 17° Long Stellar Stream Using the Canada–France Imaging Survey. Astrophysical Journal, 2020, 902, 89.	1.6	20
77	Chemical Mapping of the Milky Way with The Canada–France Imaging Survey: A Non-parametric Metallicity–Distance Decomposition of the Galaxy. Astrophysical Journal, 2017, 848, 129.	1.6	19
78	A rogues gallery of Andromeda's dwarf galaxies – II. Precise distances to 17 faint satellites. Monthly Notices of the Royal Astronomical Society, 2019, 489, 763-770.	1.6	19
79	DDO 216-A1: A Central Globular Cluster in a Low-luminosity Transition-type Galaxy ^{â^—} . Astrophysical Journal, 2017, 837, 54.	1.6	17
80	The survey of planetary nebulae in Andromeda (M 31). Astronomy and Astrophysics, 2021, 647, A130.	2.1	17
81	Kinematics of the Tucana Dwarf Galaxy: an unusually dense dwarf in the Local Group. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2010-2025.	1.6	16
82	Solo dwarfs – III. Exploring the orbital origins of isolated Local Group galaxies with <i>Gaia</i> Data Release 2. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2363-2377.	1.6	15
83	A DEEP PHOTOMETRIC LOOK AT TWO OF ANDROMEDA'S DWARF SPHEROIDALS: X AND XVII. Astrophysical Journal, 2011, 729, 23.	1.6	13
84	The Pristine survey – VII. A cleaner view of the Galactic outer halo using blue horizontal branch stars. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5757-5769.	1.6	13
85	Compact groups in theory and practice - II. Comparing the observed and predicted nature of galaxies in compact groups. Monthly Notices of the Royal Astronomical Society, 2009, 392, 1141-1152.	1.6	12
86	Ram pressure candidates in UNIONS. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1342-1357.	1.6	11
87	The red extended structure of ICÂ10, the nearest blue compact galaxy. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1000-1011.	1.6	10
88	THE NEXT GENERATION VIRGO CLUSTER SURVEY. XIX. TOMOGRAPHY OF MILKY WAY SUBSTRUCTURES IN THE NGVS FOOTPRINT. Astrophysical Journal, 2016, 819, 124.	1.6	10
89	NGCÂ147, NGCÂ185 and CassII: a genetic approach to orbital properties, star formation and tidal debris. Monthly Notices of the Royal Astronomical Society, 2016, 456, 1654-1665.	1.6	10
90	Dwarfs or Giants? Stellar Metallicities and Distances from ugrizG Multiband Photometry. Astrophysical Journal, 2019, 886, 10.	1.6	10

#	Article	IF	CITATIONS
91	Evidence of ram-pressure stripping of WLM, a dwarf galaxy far away from any large host galaxy. Astronomy and Astrophysics, 2022, 660, L11.	2.1	10
92	Uncovering fossils of the distant Milky Way with UNIONS: NGCÂ5466 and its stellar stream. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1923-1936.	1.6	9
93	White Dwarfs in the Era of the LSST and Its Synergies with Space-based Missions. Astrophysical Journal, 2020, 900, 139.	1.6	9
94	Modeling and budgeting fiber injection efficiency for the Maunakea Spectroscopic Explorer (MSE). , 2018, , .		8
95	Maunakea Spectroscopic Explorer (MSE): instrumentation suite. , 2018, , .		8
96	The Mass and Age Distribution of Halo White Dwarfs in the Canada–France Imaging Survey. Astrophysical Journal, 2021, 913, 30.	1.6	7
97	Maunakea spectroscopic explorer advancing from conceptual design. , 2018, , .		7
98	Maximising the sensitivity of next generation multi-object spectroscopy: system budget development and design optimizations for the Maunakea Spectroscopic Explorer. , 2018, , .		7
99	High-precision astrometry towards ELTs. Proceedings of SPIE, 2016, , .	0.8	6
100	Observing the Stellar Halo of Andromeda in Cosmological Simulations: The AURIGA2PANDAS Pipeline. Astrophysical Journal, 2021, 910, 92.	1.6	6
101	Mauna Kea Spectroscopic Explorer (MSE): a preliminary design of multi-object high resolution spectrograph. , 2018, , .		6
102	Progress on the Gemini High-Resolution Optical SpecTrograph (GHOST) design. Proceedings of SPIE, 2014, , .	0.8	5
103	The Next Generation Virgo Cluster Survey. XXVIII. Characterization of the Galactic White Dwarf Population. Astrophysical Journal, 2017, 843, 53.	1.6	5
104	MSE FiTS: the ultimate multi-fiber optic transmission system. , 2018, , .		5
105	The PAndAS View of the Andromeda Satellite System. III. Dwarf Galaxy Detection Limits. Astrophysical Journal, 2022, 933, 135.	1.6	5
106	The Maunakea Spectroscopic Explorer: throughput optimization. , 2016, , .		4
107	Stellar photometry with multi conjugate adaptive optics. Proceedings of SPIE, 2016, , .	0.8	4
108	Maunakea spectroscopic explorer (MSE): implementing systems engineering methodology for the		4

development of a new facility. , 2018, , .

#	Article	IF	CITATIONS
109	Photometric performance of LGS MCAO with science-based metrics: first results from Gemini/GeMS observations of Galactic globular clusters. , 2014, , .		3
110	Spectral calibration for the Maunakea Spectroscopic Explorer: challenges and solutions. Proceedings of SPIE, 2016, , .	0.8	3
111	Systems budgets architecture and development for the Maunakea Spectroscopic Explorer. Proceedings of SPIE, 2016, , .	0.8	3
112	Science-based requirements and operations development for the Maunakea Spectroscopic Explorer. Proceedings of SPIE, 2016, , .	0.8	3
113	A dwarf disrupting – Andromeda XXVII and the North West Stream. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2905-2917.	1.6	3
114	Maunakea spectroscopic explorer design development from feasibility concept to baseline design. Proceedings of SPIE, 2016, , .	0.8	3
115	Gemini high-resolution optical spectrograph conceptual design. Proceedings of SPIE, 2012, , .	0.8	2
116	Current status and future plans for the Maunakea Spectroscopic Explorer (MSE). Proceedings of SPIE, 2014, , .	0.8	2
117	Maunakea Spectroscopic Explorer: the status and progress of a major site redevelopment project. , 2016, , .		2
118	Optimal Differential Astrometry for Multiconjugate Adaptive Optics. I. Astrometric Distortion Mapping using On-sky GeMS Observations of NGC 6723. Astronomical Journal, 2022, 163, 187.	1.9	2
119	Feasibility studies to upgrade the Canada-France-Hawaii Telescope site for the next generation Canada-France-Hawaii Telescope. Proceedings of SPIE, 2012, , .	0.8	1
120	MSE observatory: a revised and optimized astronomical facility. , 2016, , .		1
121	Expected observing efficiency of the Maunakea Spectroscopic Explorer (MSE). , 2018, , .		1
122	The science calibration challenges of next generation highly multiplexed optical spectroscopy: the case of the Maunakea Spectroscopic Explorer. , 2018, , .		1
123	Optimal scheduling and science delivery of spectra for millions of targets in thousands of fields: the operational concept of the Maunakea spectroscopic explorer (MSE). , 2018, , .		1
124	Andromeda and the seven dwarfs. Proceedings of the International Astronomical Union, 2005, 1, 84-91.	0.0	0
125	The structural complexity of the dwarf galaxies of the Local Group. Proceedings of the International Astronomical Union, 2006, 2, .	0.0	0
126	Gas Flows in Galaxies: the Relative Importance of Mergers and Bars Proceedings of the International Astronomical Union, 2010, 6, 178-181.	0.0	0

#	Article	IF	CITATIONS
127	The next generation of the Canada-France-Hawaii Telescope: science requirements and survey strategies. Proceedings of SPIE, 2012, , .	0.8	0
128	Tracking our neighbours' past. Nature, 2013, 504, 226-227.	13.7	0
129	The Maunakea Spectroscopic Explorer: the science driven design rationale. Proceedings of SPIE, 2014, , .	0.8	0
130	Stellar halos around Local Group galaxies. Proceedings of the International Astronomical Union, 2015, 11, 15-20.	0.0	0
131	Photometric techniques, performance and PSF characterization of GeMS. Proceedings of SPIE, 2016, , .	0.8	0
132	Binarity in CEMP-no stars. Proceedings of the International Astronomical Union, 2017, 13, 273-274.	0.0	0
133	Chemistry and binarity in the early Universe: what is the role of metal-poor AGB stars?. Proceedings of the International Astronomical Union, 2018, 14, 265-267.	0.0	0
134	Isolated dwarf galaxies in the Local Group. Proceedings of the International Astronomical Union, 2018, 14, 81-85.	0.0	0
135	Newly discovered Planetary Nebulae population in Andromeda (M31): PN Luminosity function and implications for the late stages of stellar evolution. Proceedings of the International Astronomical Union, 2018, 14, 201-205.	0.0	0
136	Canadian participation in wide-field astronomy. Nature Astronomy, 2019, 3, 121-123.	4.2	0
137	Contrasting the Milky Way and M 31 Satellite Galaxies. Thirty Years of Astronomical Discovery With UKIRT, 2008, , 215-218.	0.3	0
138	Transforming the Canada France Hawaii Telescope (CFHT) into the Maunakea Spectroscopic Explorer (MSE): a conceptual observatory building and facilities design. , 2018, , .		0