Thomas P Johnston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9415328/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunomodulatory Therapeutic Effects of Curcumin on M1/M2 Macrophage Polarization in Inflammatory Diseases. Current Molecular Pharmacology, 2023, 16, 2-14.	0.7	5
2	The interaction of Helicobacter pylori with cancer immunomodulatory stromal cells: New insight into gastric cancer pathogenesis. Seminars in Cancer Biology, 2022, 86, 951-959.	4.3	22
3	Implications for the role of lipopolysaccharide in the development of atherosclerosis. Trends in Cardiovascular Medicine, 2022, 32, 525-533.	2.3	33
4	Lipid-based nanoparticulate delivery systems for HER2-positive breast cancer immunotherapy. Life Sciences, 2022, 291, 120294.	2.0	12
5	Nanoparticle-based drug delivery systems in cancer: A focus on inflammatory pathways. Seminars in Cancer Biology, 2022, 86, 860-872.	4.3	33
6	Advantages and drawbacks of dexamethasone in glioblastoma multiforme. Critical Reviews in Oncology/Hematology, 2022, 172, 103625.	2.0	16
7	Immunomodulatory effects of curcumin in systemic autoimmune diseases. Phytotherapy Research, 2022, 36, 1616-1632.	2.8	21
8	Polymeric nanomicelles of curcumin: Potential applications in cancer. International Journal of Pharmaceutics, 2022, 617, 121622.	2.6	30
9	Curcumin: A therapeutic strategy for targeting the Helicobacter pylori-related diseases. Microbial Pathogenesis, 2022, 166, 105552.	1.3	7
10	Impact of fenofibrate on NAFLD/NASH: A genetic perspective. Drug Discovery Today, 2022, 27, 2363-2372.	3.2	13
11	Liver Protective Effect of Fenofibrate in NASH/NAFLD Animal Models. PPAR Research, 2022, 2022, 1-12.	1.1	11
12	Anti-inflammatory Action of Statins in Cardiovascular Disease: the Role of Inflammasome and Toll-Like Receptor Pathways. Clinical Reviews in Allergy and Immunology, 2021, 60, 175-199.	2.9	169
13	The effect of oral curcumin supplementation on health-related quality of life: A systematic review and meta-analysis of randomized controlled trials. Journal of Affective Disorders, 2021, 278, 627-636.	2.0	46
14	Statin therapy and sex hormones. European Journal of Pharmacology, 2021, 890, 173745.	1.7	10
15	The role of phytochemicals in sepsis: A mechanistic and therapeutic perspective. BioFactors, 2021, 47, 19-40.	2.6	31
16	COVID-19 and cardiac injury: clinical manifestations, biomarkers, mechanisms, diagnosis, treatment, and follow up. Expert Review of Anti-Infective Therapy, 2021, 19, 345-357.	2.0	157
17	Paving the Road Toward Exploiting the Therapeutic Effects of Ginsenosides: An Emphasis on Autophagy and Endoplasmic Reticulum Stress. Advances in Experimental Medicine and Biology, 2021, 1308, 137-160.	0.8	4
18	The Level of Procalcitonin in Severe COVID-19 Patients: A Systematic Review and Meta-Analysis. Advances in Experimental Medicine and Biology, 2021, 1321, 277-286.	0.8	11

#	Article	IF	CITATIONS
19	Age-Specific Differences in the Severity of COVID-19 Between Children and Adults: Reality and Reasons. Advances in Experimental Medicine and Biology, 2021, 1327, 63-78.	0.8	4
20	Foam Cells as Therapeutic Targets in Atherosclerosis with a Focus on the Regulatory Roles of Non-Coding RNAs. International Journal of Molecular Sciences, 2021, 22, 2529.	1.8	42
21	Beneficial Effect of Statin Therapy on Arterial Stiffness. BioMed Research International, 2021, 2021, 1-19.	0.9	21
22	Medicinal plants and bioactive natural products as inhibitors of <scp>NLRP3</scp> inflammasome. Phytotherapy Research, 2021, 35, 4804-4833.	2.8	24
23	Anti-atherosclerotic Effects of Spice-Derived Phytochemicals. Current Medicinal Chemistry, 2021, 28, 1197-1223.	1.2	6
24	Targeting the PD-1/PD-L1 pathway in glioblastoma multiforme: Preclinical evidence and clinical interventions. International Immunopharmacology, 2021, 93, 107403.	1.7	30
25	Regulation of Apolipoprotein B by Natural Products and Nutraceuticals: A Comprehensive Review. Current Medicinal Chemistry, 2021, 28, 1363-1406.	1.2	13
26	CD47 in the Brain and Neurodegeneration: An Update on the Role in Neuroinflammatory Pathways. Molecules, 2021, 26, 3943.	1.7	10
27	Bortezomib: a proteasome inhibitor for the treatment of autoimmune diseases. Inflammopharmacology, 2021, 29, 1291-1306.	1.9	15
28	The clinical use of curcumin on neurological disorders: An updated systematic review of clinical trials. Phytotherapy Research, 2021, 35, 6862-6882.	2.8	30
29	Therapeutic Effects of Polyphenols on the Treatment of Colorectal Cancer by Regulating Wnt β-Catenin Signaling Pathway. Journal of Oncology, 2021, 2021, 1-12.	0.6	8
30	Antidiabetic drugs and oxidized low-density lipoprotein: A review of anti-atherosclerotic mechanisms. Pharmacological Research, 2021, 172, 105819.	3.1	14
31	Protective Effects of Curcumin on Pulmonary Arterial Hypertension. Advances in Experimental Medicine and Biology, 2021, 1328, 213-221.	0.8	1
32	A Review on the Phytochemistry, Pharmacology, and Therapeutic Effects of Rheum ribes. Advances in Experimental Medicine and Biology, 2021, 1328, 447-461.	0.8	5
33	Cystatin C and cystatin SN as possible soluble tumor markers in malignant uveal melanoma. Radiology and Oncology, 2021, 56, 83-91.	0.6	5
34	A new approach to the diagnosis and treatment of atherosclerosis: the era of the liposome. Drug Discovery Today, 2020, 25, 58-72.	3.2	27
35	Unfolded protein responseâ€mediated modulation of mesenchymal stem cells. IUBMB Life, 2020, 72, 187-197	1.5	9
36	Prospects for the potential of RNA interference in the treatment of autoimmune diseases: Small interfering RNAs in the spotlight. Journal of Autoimmunity, 2020, 114, 102529.	3.0	12

#	Article	IF	CITATIONS
37	Antiviral effects of statins. Progress in Lipid Research, 2020, 79, 101054.	5.3	45
38	Wnt Network: A Brief Review of Pathways and Multifunctional Components. Critical Reviews in Eukaryotic Gene Expression, 2020, 30, 1-18.	0.4	8
39	Lysosomotropic Features and Autophagy Modulators among Medical Drugs: Evaluation of Their Role in Pathologies. Molecules, 2020, 25, 5052.	1.7	7
40	Statins and autoimmunity: State-of-the-art. , 2020, 214, 107614.		29
41	Antifungal effects of statins. , 2020, 208, 107483.		41
42	The effects of statins on dental and oral health: a review of preclinical and clinical studies. Journal of Translational Medicine, 2020, 18, 155.	1.8	42
43	The pivotal role of CD69 in autoimmunity. Journal of Autoimmunity, 2020, 111, 102453.	3.0	32
44	Enhancing the Therapeutic Efficacy of Bortezomib in Cancer Therapy Using Polymeric Nanostructures. Current Pharmaceutical Design, 2020, 25, 4883-4892.	0.9	6
45	The Efficacy of Anti-inflammatory Agents in the Prevention of Atrial Fibrillation Recurrences. Current Medicinal Chemistry, 2020, 28, 137-151.	1.2	7
46	Pharmacological and Therapeutic Aspects of Plants from the Genus Ferula: A Comprehensive Review. Mini-Reviews in Medicinal Chemistry, 2020, 20, 1233-1257.	1.1	7
47	Anti-Tumor Effects of Osthole on Different Malignant Tissues: A Review of Molecular Mechanisms. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 918-931.	0.9	14
48	Evidence of curcumin and curcumin analogue effects in skin diseases: A narrative review. Journal of Cellular Physiology, 2019, 234, 1165-1178.	2.0	113
49	Efferocytosis and Atherosclerosis: Regulation of Phagocyte Function by MicroRNAs. Trends in Endocrinology and Metabolism, 2019, 30, 672-683.	3.1	40
50	Parenteral systems for statin delivery: a review. Lipids in Health and Disease, 2019, 18, 193.	1.2	21
51	The Role of Mesenchymal Stem Cells in Atherosclerosis: Prospects for Therapy via the Modulation of Inflammatory Milieu. Journal of Clinical Medicine, 2019, 8, 1413.	1.0	23
52	Chitosanâ€based delivery systems for curcumin: A review of pharmacodynamic and pharmacokinetic aspects. Journal of Cellular Physiology, 2019, 234, 12325-12340.	2.0	35
53	Demethoxycurcumin: A naturally occurring curcumin analogue for treating non ancerous diseases. Journal of Cellular Physiology, 2019, 234, 19320-19330.	2.0	38
54	Colon cancer stem cells: Potential target for the treatment of colorectal cancer. Cancer Biology and Therapy, 2019, 20, 1068-1082.	1.5	90

#	Article	IF	CITATIONS
55	The role of protein SUMOylation in rheumatoid arthritis. Journal of Autoimmunity, 2019, 102, 1-7.	3.0	15
56	Biological properties of metal complexes of curcumin. BioFactors, 2019, 45, 304-317.	2.6	72
57	Antitumor effects of curcumin: A lipid perspective. Journal of Cellular Physiology, 2019, 234, 14743-14758.	2.0	39
58	Drug interactions of cola-containing drinks. Clinical Nutrition, 2019, 38, 2545-2551.	2.3	14
59	Atrial fibrillation in βâ€thalassemia patients with a focus on the role of ironâ€overload and oxidative stress: A review. Journal of Cellular Physiology, 2019, 234, 12249-12266.	2.0	15
60	Atherosclerosis and immunity: A perspective. Trends in Cardiovascular Medicine, 2019, 29, 363-371.	2.3	93
61	Application of nanotechnology to improve the therapeutic benefits of statins. Drug Discovery Today, 2019, 24, 567-574.	3.2	31
62	Neuroprotective effects of antioxidants in the management of neurodegenerative disorders: A literature review. Journal of Cellular Biochemistry, 2019, 120, 2742-2748.	1.2	23
63	The change of immunosuppressive regimen from calcineurin inhibitors to mammalian target of rapamycin (mTOR) inhibitors and its effect on malignancy following heart transplantation. International Immunopharmacology, 2019, 69, 150-158.	1.7	8
64	Crocin Improves Oxidative Stress by Potentiating Intrinsic Anti-Oxidant Defense Systems in Pancreatic Cells During Uncontrolled Hyperglycemia. Journal of Pharmacopuncture, 2019, 22, 83-89.	0.4	15
65	Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. Journal of Cellular Physiology, 2018, 233, 141-152.	2.0	192
66	Therapeutic effects of curcumin in inflammatory and immuneâ€mediated diseases: A natureâ€made jackâ€ofâ€allâ€trades?. Journal of Cellular Physiology, 2018, 233, 830-848.	2.0	209
67	Lipoprotein(a): A missing culprit in the management of atheroâ€ŧhrombosis?. Journal of Cellular Physiology, 2018, 233, 2966-2981.	2.0	61
68	Curcumin, hemostasis, thrombosis, and coagulation. Journal of Cellular Physiology, 2018, 233, 4497-4511.	2.0	111
69	Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmunity Reviews, 2018, 17, 125-135.	2.5	142
70	Analgesic and sedative agents used in the intensive care unit: A review. Journal of Cellular Biochemistry, 2018, 119, 8684-8693.	1.2	11
71	Mechanisms Underlying Early-Stage Changes in Visual Performance and Retina Function After Experimental Induction of Sustained Dyslipidemia. Neurochemical Research, 2018, 43, 1500-1510. 	1.6	6
72	One Molecule, Many Targets and Numerous Effects: The Pleiotropy of Curcumin Lies in its Chemical Structure. Current Pharmaceutical Design, 2018, 24, 2129-2136.	0.9	31

#	Article	IF	CITATIONS
73	Exosomes: Nanoparticulate tools for RNA interference and drug delivery. Journal of Cellular Physiology, 2017, 232, 1660-1668.	2.0	82
74	Curcumin: A Naturally Occurring Modulator of Adipokines in Diabetes. Journal of Cellular Biochemistry, 2017, 118, 4170-4182.	1.2	42
75	Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. BioFactors, 2017, 43, 331-346.	2.6	156
76	Transdermal delivery of atorvastatin calcium from novel nanovesicular systems using polyethylene glycol fatty acid esters: Ameliorated effect without liver toxicity in poloxamer 407-induced hyperlipidemic rats. Journal of Controlled Release, 2017, 254, 10-22.	4.8	54
77	P-407-induced Mouse Model of Dose-controlled Hyperlipidemia and Atherosclerosis: 25 Years Later. Journal of Cardiovascular Pharmacology, 2017, 70, 339-352.	0.8	28
78	Novel approaches toward the generation of bioscaffolds as a potential therapy in cardiovascular tissue engineering. International Journal of Cardiology, 2017, 228, 319-326.	0.8	24
79	Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacological Research, 2017, 115, 133-148.	3.1	202
80	Curcumin and Endothelial Function: Evidence and Mechanisms of Protective Effects. Current Pharmaceutical Design, 2017, 23, 2462-2473.	0.9	45
81	The impact of stress on body function: A review. EXCLI Journal, 2017, 16, 1057-1072.	0.5	385
82	Is There a Role for Curcumin Supplementation in the Treatment of Non-Alcoholic Fatty Liver Disease? The Data Suggest Yes. Current Pharmaceutical Design, 2017, 23, 969-982.	0.9	74
83	Curcumin as a MicroRNA Regulator in Cancer: A Review. Reviews of Physiology, Biochemistry and Pharmacology, 2016, 171, 1-38.	0.9	187
84	Methylated arginine analogues: their potential role in atherosclerosis and cognition using the poloxamer-407-induced mouse model of dyslipidemia. Canadian Journal of Physiology and Pharmacology, 2016, 94, 1122-1131.	0.7	2
85	Early-stage atherosclerosis in poloxamer 407-induced hyperlipidemic mice: pathological features and changes in the lipid composition of serum lipoprotein fractions and subfractions. Lipids in Health and Disease, 2016, 15, 16.	1.2	24
86	Canine Periodontal Disease Control Using a Clindamycin Hydrochloride Gel. Journal of Veterinary Dentistry, 2011, 28, 224-229.	0.1	13
87	Inducing a change in the pharmacokinetics and biodistribution of poly-l-lysine in rats by complexation with heparin. Journal of Pharmacy and Pharmacology, 2010, 55, 1083-1090.	1.2	7
88	Inhibition of pancreatic lipase by poloxamer 407 may provide an adjunct treatment strategy for weight loss. Journal of Pharmacy and Pharmacology, 2010, 58, 1099-1105.	1.2	15
89	The induction of atherogenic dyslipidaemia in poloxamer 407-treated mice is not mediated through PPARα. Journal of Pharmacy and Pharmacology, 2010, 60, 753-759.	1.2	11
90	Poloxamer 407 as a general lipase inhibitor: its implications in lipid metabolism and atheroma formation in C57BL/6 mice. Journal of Pharmacy and Pharmacology, 2010, 62, 1807-1812.	1.2	26

#	Article	IF	CITATIONS
91	Circulating free fatty acids are increased independently of PPARÎ ³ activity after administration of poloxamerÂ407 to mice. Canadian Journal of Physiology and Pharmacology, 2008, 86, 643-649.	0.7	10
92	Oxidation of Low-Density Lipoprotein Cholesterol Following Administration of Poloxamer 407 to Mice Results From an Indirect Effect. Journal of Cardiovascular Pharmacology, 2007, 49, 246-252.	0.8	17
93	Poloxamer 407 (P-407)-mediated reduction in the gene expression of ATP-binding-cassette transporter A1 may contribute to increased cholesterol in peripheral tissues of P-407-treated rats. European Journal of Pharmacology, 2006, 536, 232-240.	1.7	14
94	The P-407–Induced Murine Model of Dose-Controlled Hyperlipidemia and Atherosclerosis. Journal of Cardiovascular Pharmacology, 2004, 43, 595-606.	0.8	79
95	An Attempt to Modulate the Microporous Diffusion of a Model Polypeptide by Altering Its Secondary Structure. Drug Delivery, 2003, 10, 65-72.	2.5	1
96	Poloxamer 407-induced atherosclerosis in mice appears to be due to lipid derangements and not due to its direct effects on endothelial cells and macrophages. Mediators of Inflammation, 2003, 12, 147-155.	1.4	23
97	Sex Does Not Seem to Influence the Formation of Aortic Lesions in the P-407-Induced Mouse Model of Hyperlipidemia and Atherosclerosis. Journal of Cardiovascular Pharmacology, 2002, 39, 404-411.	0.8	17
98	Fine-Particle Ethylcellulose as a Tablet Binder in Direct Compression, Immediate-Release Tablets. Drug Development and Industrial Pharmacy, 2001, 27, 633-641.	0.9	16
99	Evaluation of the Gum fromHakea gibbosaas a Sustained-Release and Mucoadhesive Component in Buccal Tablets. Pharmaceutical Development and Technology, 1999, 4, 347-358.	1.1	44
100	Permeation of unfolded basic fibroblast growth factor (bFGF) across rabbit buccal mucosadoes unfolding of bFGF enhance transport?. Pharmaceutical Research, 1998, 15, 246-253.	1.7	15
101	Transmucosal Delivery of Oxytocin to Rabbits Using a Mucoadhesive Buccal Patch. Pharmaceutical Development and Technology, 1997, 2, 265-274.	1.1	53
102	In Vitro Release and Permeation of Oxytocin from a Mucoadhesive Buccal Patch. Pharmaceutical Development and Technology, 1996, 1, 357-364.	1.1	17
103	Sustained delivery of interleukin-2 from a poloxamer 407 gel matrix following intraperitoneal injection in mice. Pharmaceutical Research, 1992, 09, 425-434.	1.7	143