Felicity A Roddick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/941511/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantification of seasonal photo-induced formation of reactive intermediates in a municipal sewage lagoon upon sunlight exposure. Science of the Total Environment, 2021, 765, 142733.	8.0	11

2 Recovery and reuse of alginate in an immobilized algae reactor. Environmental Technology (United) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

3	Cationic starch: an effective flocculant for separating algal biomass from wastewater RO concentrate treated by microalgae. Journal of Applied Phycology, 2021, 33, 917-928.	2.8	10
4	Alginate-immobilised algal wastewater treatment enhanced by species selection. Algal Research, 2021, 54, 102219.	4.6	20
5	A review of the current in-situ fouling control strategies in MBR: Biological versus physicochemical. Journal of Industrial and Engineering Chemistry, 2021, 98, 42-59.	5.8	38
6	Treatment of wastewater reverse osmosis concentrate using alginate-immobilised microalgae: Integrated impact of solution conditions on algal bead performance. Chemosphere, 2021, 276, 130028.	8.2	21
7	Impact of microalgae species and solution salinity on algal treatment of wastewater reverse osmosis concentrate. Chemosphere, 2021, 285, 131487.	8.2	11
8	A triple bottom line approach to optimising odour removal from a residential water supply. H2Open Journal, 2021, 4, 63-76.	1.7	0
9	A comparative study of biological activated carbon based treatments on two different types of municipal reverse osmosis concentrates. Chemosphere, 2020, 240, 124925.	8.2	7
10	Fugacity modelling of the fate of micropollutants in aqueous systems — Uncertainty and sensitivity issues. Science of the Total Environment, 2020, 699, 134249.	8.0	21
11	Application of enhanced membrane bioreactor (eMBR) for the reuse of carwash wastewater. Journal of Environmental Management, 2020, 254, 109780.	7.8	15
12	Photodegradation of emerging contaminants in a sunlit wastewater lagoon, seasonal measurements, environmental impacts and modelling. Environmental Science: Water Research and Technology, 2020, 6, 3380-3390.	2.4	3
13	Energy and nutrient recovery by treating wastewater with fluidised-beds of immobilised algae. Journal of Water Process Engineering, 2020, 38, 101585.	5.6	9
14	Potential of Chlorella vulgaris and Nannochloropsis salina for nutrient and organic matter removal from municipal wastewater reverse osmosis concentrate. Environmental Science and Pollution Research, 2020, 27, 26905-26914.	5.3	12
15	Application of a QWASI model to produce validated insights into the fate and transport of six emerging contaminants in a wastewater lagoon system. Science of the Total Environment, 2020, 721, 137676.	8.0	13
16	Nutrient removal by alginateâ€immobilized <scp><i>Chlorella vulgaris</i></scp> : response to different wastewater matrices. Journal of Chemical Technology and Biotechnology, 2020, 95, 1790-1799.	3.2	36
17	Ultraviolet/persulfate pre-treatment for organic fouling mitigation of forward osmosis membrane: Possible application in nutrient mining from dairy wastewater. Separation and Purification Technology, 2019, 217, 215-220.	7.9	36
18	Moving from the traditional paradigm of pathogen inactivation to controlling antibiotic resistance in water - Role of ultraviolet irradiation. Science of the Total Environment, 2019, 662, 923-939.	8.0	60

FELICITY A RODDICK

#	Article	IF	CITATIONS
19	Impact of alginate selection for wastewater treatment by immobilised Chlorella vulgaris. Chemical Engineering Journal, 2019, 358, 1601-1609.	12.7	39
20	Sustainable Management of Municipal Wastewater Reverse Osmosis Concentrate: Treatment with Biological Activated Carbon Based Processes for Safe Disposal. , 2019, , 1-14.		0
21	The impact of wastewater characteristics, algal species selection and immobilisation on simultaneous nitrogen and phosphorus removal. Algal Research, 2018, 31, 478-488.	4.6	67
22	Performance of ceramic ultrafiltration and reverse osmosis membranes in treating car wash wastewater for reuse. Environmental Science and Pollution Research, 2018, 25, 8654-8668.	5.3	36
23	Preparation, characterisation and critical flux determination of graphene oxide blended polysulfone (PSf) membranes in an MBR system. Journal of Environmental Management, 2018, 213, 168-179.	7.8	21
24	Impact of biological activated carbon pre-treatment on the hydrophilic fraction of effluent organic matter for mitigating fouling in microfiltration. Environmental Technology (United Kingdom), 2018, 39, 2243-2250.	2.2	7
25	Tertiary nutrient removal from wastewater by immobilised microalgae: impact of wastewater nutrient characteristics and hydraulic retention time (HRT). H2Open Journal, 2018, 1, 12-25.	1.7	21
26	Impact of the Interaction between Aquatic Humic Substances and Algal Organic Matter on the Fouling of a Ceramic Microfiltration Membrane. Membranes, 2018, 8, 7.	3.0	13
27	Applications of microalgal biofilms for wastewater treatment and bioenergy production. Biotechnology for Biofuels, 2017, 10, 120.	6.2	122
28	Direct and indirect photolysis of seven micropollutants in secondary effluent from a wastewater lagoon. Chemosphere, 2017, 185, 297-308.	8.2	92
29	Biofiltration of feedwater to control organic fouling of low pressure membranes. Critical Reviews in Environmental Science and Technology, 2017, 47, 1958-1985.	12.8	8
30	Combining Coagulation/MIEX with Biological Activated Carbon Treatment to Control Organic Fouling in the Microfiltration of Secondary Effluent. Membranes, 2016, 6, 39.	3.0	3
31	Variability in 24 hour excretion of cyanuric acid: implications for water exposure assessment. Journal of Water and Health, 2016, 14, 192-198.	2.6	8
32	Measuring water ingestion from spray exposures. Water Research, 2016, 99, 1-6.	11.3	17
33	Impact of algal organic matter released from Microcystis aeruginosa and Chlorella sp. on the fouling of a ceramic microfiltration membrane. Water Research, 2016, 103, 391-400.	11.3	42
34	Aquatic plant Azolla as the universal feedstock for biofuel production. Biotechnology for Biofuels, 2016, 9, 221.	6.2	80
35	Long-term operation of biological activated carbon pre-treatment for microfiltration of secondary effluent: Correlation between the organic foulants and fouling potential. Water Research, 2016, 90, 405-414.	11.3	28
36	Impact of salinity on organic matter and nitrogen removal from a municipal wastewater RO concentrate using biologically activated carbon coupled with UV/H2O2. Water Research, 2016, 94, 103-110.	11.3	44

FELICITY A RODDICK

#	Article	IF	CITATIONS
37	Laccase–syringaldehyde-mediated degradation of trace organic contaminants in an enzymatic membrane reactor: Removal efficiency and effluent toxicity. Bioresource Technology, 2016, 200, 477-484.	9.6	75
38	Comparison of coagulation efficiency of aluminium and ferric-based coagulants as pre-treatment for UVC/H 2 O 2 treatment of wastewater RO concentrate. Chemical Engineering Journal, 2016, 284, 841-849.	12.7	56
39	Impact of coagulation as a pre-treatment for UVC/H 2 O 2 -biological activated carbon treatment of a municipal wastewater reverse osmosis concentrate. Water Research, 2016, 88, 12-19.	11.3	33
40	Assessment of biological activated carbon treatment to control membrane fouling in reverse osmosis of secondary effluent for reuse in irrigation. Desalination, 2015, 364, 90-95.	8.2	32
41	Efficiency of sequential ozone and UV-based treatments for the treatment of secondary effluent. Chemical Engineering Journal, 2015, 268, 337-347.	12.7	23
42	Degradation of a broad spectrum of trace organic contaminants by anÂenzymatic membrane reactor: Complementary role of membrane retention and enzymatic degradation. International Biodeterioration and Biodegradation, 2015, 99, 115-122.	3.9	58
43	Removing organic and nitrogen content from a highly saline municipal wastewater reverse osmosis concentrate by UV/H2O2–BAC treatment. Chemosphere, 2015, 136, 198-203.	8.2	43
44	Effect of feedwater pre-treatment using UV/H 2 O 2 for mitigating the fouling of a ceramic MF membrane caused by soluble algal organic matter. Journal of Membrane Science, 2015, 493, 683-689.	8.2	66
45	Treatment of secondary effluent with biological activated carbon to reduce fouling of microfiltration membranes caused by algal organic matter from Microcystis aeruginosa. Journal of Membrane Science, 2015, 496, 125-131.	8.2	25
46	Recent Advancements in the Treatment of Municipal Wastewater Reverse Osmosis Concentrate—An Overview. Critical Reviews in Environmental Science and Technology, 2015, 45, 193-248.	12.8	57
47	A comparative study of biological activated carbon, granular activated carbon and coagulation feed pre-treatment for improving microfiltration performance in wastewater reclamation. Journal of Membrane Science, 2015, 475, 147-155.	8.2	34
48	Effect of biological activated carbon pre-treatment to control organic fouling in the microfiltration of biologically treated secondary effluent. Water Research, 2014, 63, 147-157.	11.3	50
49	Feedwater coagulation to mitigate the fouling of a ceramic MF membrane caused by soluble algal organic matter. Separation and Purification Technology, 2014, 133, 221-226.	7.9	39
50	Effect of coagulation on treatment of municipal wastewater reverse osmosis concentrate by UVC/H2O2. Journal of Hazardous Materials, 2014, 266, 10-18.	12.4	36
51	Photo-assisted electrochemical treatment of municipal wastewater reverse osmosis concentrate. Chemical Engineering Journal, 2014, 249, 180-188.	12.7	45
52	Enhancement of trace organic contaminant degradation by crude enzyme extract from Trametes versicolor culture: Effect of mediator type and concentration. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1855-1862.	5.3	44
53	The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor. Bioresource Technology, 2014, 167, 169-177.	9.6	63
54	Removal of trace organic contaminants by an MBR comprising a mixed culture of bacteria and white-rot fungi. Bioresource Technology, 2013, 148, 234-241.	9.6	112

FELICITY A RODDICK

#	Article	IF	CITATIONS
55	Potential of BAC combined with UVC/H2O2 for reducing organic matter from highly saline reverse osmosis concentrate produced from municipal wastewater reclamation. Chemosphere, 2013, 93, 683-688.	8.2	52
56	Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: A critical review. Bioresource Technology, 2013, 141, 97-108.	9.6	241
57	Understanding the fouling of a ceramic microfiltration membrane caused by algal organic matter released from Microcystis aeruginosa. Journal of Membrane Science, 2013, 447, 362-368.	8.2	84
58	Characterisation of foulants in membrane filtration of biorefinery effluents. Desalination and Water Treatment, 2013, 51, 1563-1570.	1.0	10
59	Influence of the characteristics of soluble algal organic matter released from Microcystis aeruginosa on the fouling of a ceramic microfiltration membrane. Journal of Membrane Science, 2013, 425-426, 23-29.	8.2	84
60	Assessing the potential of a UV-based AOP for treating high-salinity municipal wastewater reverse osmosis concentrate. Water Science and Technology, 2013, 68, 1994-1999.	2.5	20
61	Biofouling of Water Treatment Membranes: A Review of the Underlying Causes, Monitoring Techniques and Control Measures. Membranes, 2012, 2, 804-840.	3.0	603
62	Impact of salinity and pH on the UVC/H2O2 treatment of reverse osmosis concentrate produced from municipal wastewater reclamation. Water Research, 2012, 46, 3229-3239.	11.3	73
63	Impact of ultrasonic pre-treatment on the microfiltration of a biologically treated municipal effluent. Desalination, 2011, 283, 75-79.	8.2	16
64	A novel glass support for the immobilization and UV-activation of horseradish peroxidase for treatment of halogenated phenols. Chemical Engineering Journal, 2011, 172, 792-792.	12.7	14
65	Low-pressure membrane filtration of secondary effluent in water reuse: Pre-treatment for fouling reduction. Journal of Membrane Science, 2008, 320, 135-142.	8.2	110
66	The future of water in Australia: The potential effects of climate change and ozone depletion on Australian water quality, quantity and treatability. The Environmentalist, 2008, 28, 158-165.	0.7	30
67	Riboflavin Triplet Quenchers Inhibit Lightstruck Flavor Formation in Beer. Journal of the American Society of Brewing Chemists, 2005, 63, 177-184.	1.1	22
68	Vacuum ultraviolet irradiation for natural organic matter removal. Journal of Water Supply: Research and Technology - AQUA, 2004, 53, 193-206.	1.4	47
69	Depolymerization of Chromophoric Natural Organic Matter. Environmental Science & Technology, 2004, 38, 3360-3369.	10.0	51
70	A Parallel Analysis of H2S and SO2Formation by Brewing Yeast in Response to Sulfur-Containing Amino Acids and Ammonium Ions. Journal of the American Society of Brewing Chemists, 2004, 62, 35-41.	1.1	32
71	6.4.5 Knowledgeâ€based decisionâ€support system design for water quality assessment in distribution networks. Incose International Symposium, 2002, 12, 855-862.	0.6	0
72	Preliminary toxicity assessment of water after treatment with uv-irradiation and UVC/H2O2. Water Research, 2001, 35, 3656-3664.	11.3	33

#	Article	IF	CITATIONS
73	Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes. Water Research, 2001, 35, 4455-4463.	11.3	349