Tim R Dargaville

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9415043/publications.pdf

Version: 2024-02-01

84 papers 4,669 citations

32 h-index 98622 67 g-index

87 all docs

87 docs citations

times ranked

87

6947 citing authors

#	Article	IF	CITATIONS
1	Prevascularized Retrievable Hybrid Implant to Enhance Function of Subcutaneous Encapsulated Islets. Tissue Engineering - Part A, 2022, 28, 212-224.	1.6	21
2	Highly Elastic Scaffolds Produced by Melt Electrowriting of Poly(Lâ€lactideâ€∢i>co∢/i>â€ἷμâ€caprolactone). Advanced Materials Technologies, 2022, 7, 2100508.	3.0	15
3	In vivo evaluation of skin integration with ventricular assist device drivelines. Journal of Heart and Lung Transplantation, 2022, 41, 1032-1043.	0.3	2
4	Macrocyclization efficiency for poly(2-oxazoline)s and poly(2-oxazine)s. Polymer Chemistry, 2022, 13, 3975-3980.	1.9	5
5	Injectable biocompatible poly(2-oxazoline) hydrogels by strain promoted alkyne–azide cycloaddition. Biointerphases, 2021, 16, 011001.	0.6	9
6	Elastic Bioresorbable Polymeric Capsules for Osmosis-Driven Delayed Burst Delivery of Vaccines. Pharmaceutics, 2021, 13, 434.	2.0	3
7	Antibacterial Albumin-Tannic Acid Coatings for Scaffold-Guided Breast Reconstruction. Frontiers in Bioengineering and Biotechnology, 2021, 9, 638577.	2.0	13
8	Poly(2-allylamidopropyl-2-oxazoline)-Based Hydrogels: From Accelerated Gelation Kinetics to <i>In Vivo</i> Compatibility in a Murine Subdermal Implant Model. Biomacromolecules, 2021, 22, 1590-1599.	2.6	11
9	A Self-Catalyzed Visible Light Driven Thiol Ligation. Journal of the American Chemical Society, 2021, 143, 7292-7297.	6.6	8
10	Production of Scaffolds Using Melt Electrospinning Writing and Cell Seeding. Methods in Molecular Biology, 2021, 2147, 111-124.	0.4	6
11	Thermoresponsive Polymer–Antibiotic Conjugates Based on Gradient Copolymers of 2-Oxazoline and 2-Oxazine. Biomacromolecules, 2021, 22, 5185-5194.	2.6	11
12	Inhaled ciprofloxacin-loaded poly(2-ethyl-2-oxazoline) nanoparticles from dry powder inhaler formulation for the potential treatment of lower respiratory tract infections. PLoS ONE, 2021, 16, e0261720.	1.1	13
13	Improving skin integration around longâ€term percutaneous devices using fibrous scaffolds in a reconstructed human skin equivalent model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 738-749.	1.6	13
14	Drug–polymer conjugates with dynamic cloud point temperatures based on poly(2-oxazoline) copolymers. Polymer Chemistry, 2020, 11, 5191-5199.	1.9	18
15	Hydrogels with Cell Adhesion Peptideâ€Decorated Channel Walls for Cell Guidance. Macromolecular Rapid Communications, 2020, 41, 2000295.	2.0	7
16	Emulating Human Tissues and Organs: A Bioprinting Perspective Toward Personalized Medicine. Chemical Reviews, 2020, 120, 11093-11139.	23.0	61
17	Transparent, Pliable, Antimicrobial Hydrogels for Ocular Wound Dressings. Applied Sciences (Switzerland), 2020, 10, 7548.	1.3	2
18	An in vitro Reconstructed Human Skin Equivalent Model to Study the Role of Skin Integration Around Percutaneous Devices Against Bacterial Infection. Frontiers in Microbiology, 2020, 11, 670.	1.5	8

#	Article	IF	CITATIONS
19	Porous 3D Printed Scaffolds For Guided Bone Regeneration In a Rat Calvarial Defect Model. Applied Materials Today, 2020, 20, 100706.	2.3	21
20	Extended use of face masks during the COVID-19 pandemic - Thermal conditioning and spray-on surface disinfection. Polymer Degradation and Stability, 2020, 179, 109251.	2.7	51
21	Going beyond RGD: screening of a cell-adhesion peptide library in 3D cell culture. Biomedical Materials (Bristol), 2020, 15, 055033.	1.7	8
22	Local Doxorubicin Delivery via 3Dâ€Printed Porous Scaffolds Reduces Systemic Cytotoxicity and Breast Cancer Recurrence in Mice. Advanced Therapeutics, 2020, 3, 2000056.	1.6	15
23	Light-induced Ligation of <i>o</i> -Quinodimethanes with Gated Fluorescence Self-reporting. Journal of the American Chemical Society, 2020, 142, 7744-7748.	6.6	26
24	Opinion to address the personal protective equipment shortage in the global community during the COVID-19 outbreak. Polymer Degradation and Stability, 2020, 176, 109162.	2.7	55
25	Architecture-inspired paradigm for 3D bioprinting of vessel-like structures using extrudable carboxylated agarose hydrogels. Emergent Materials, 2019, 2, 233-243.	3.2	25
26	Influence of side-chain length on long-term release kinetics from poly(2-oxazoline)-drug conjugate networks. European Polymer Journal, 2019, 120, 109217.	2.6	18
27	Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Progress in Polymer Science, 2019, 96, 1-20.	11.8	366
28	Tailored Melt Electrowritten Scaffolds for the Generation of Sheetâ€Like Tissue Constructs from Multicellular Spheroids. Advanced Healthcare Materials, 2019, 8, e1801326.	3.9	48
29	3D printed dual macro-, microscale porous network as a tissue engineering scaffold with drug delivering function. Biofabrication, 2019, 11, 035014.	3.7	47
30	Crosslinking of electrospun and bioextruded partially hydrolyzed poly(2-ethyl-2-oxazoline) using glutaraldehyde vapour. European Polymer Journal, 2019, 120, 109218.	2.6	13
31	Tissue adhesive and chlorhexidine gluconate interaction: Implications for vascular access device securement. Journal of Vascular Access, 2019, 20, 229-230.	0.5	0
32	Antithrombogenic peripherally inserted central catheters: overview of efficacy and safety. Expert Review of Medical Devices, 2019, 16, 25-33.	1.4	12
33	Polymer networks based on photo-caged diene dimerization. Materials Horizons, 2019, 6, 81-89.	6.4	17
34	Discovering Cell-Adhesion Peptides in Tissue Engineering: Beyond RGD. Trends in Biotechnology, 2018, 36, 372-383.	4.9	194
35	Spatial Patterning of Hydrogels via 3D Covalent Transfer Stamping from a Fugitive Ink. Macromolecular Rapid Communications, 2018, 39, 1700564.	2.0	2
36	Poly(2â€oxazoline) Hydrogels: Stateâ€ofâ€theâ€Art and Emerging Applications. Macromolecular Bioscience, 2018, 18, e1800070.	2.1	70

3

#	Article	IF	CITATIONS
37	Poly(2-oxazoline) block copolymer nanoparticles for curcumin loading and delivery to cancer cells. European Polymer Journal, 2017, 93, 682-694.	2.6	36
38	Evaluation of diagnostic tools that tertiary teachers can apply to profile their students' conceptions. International Journal of Science Education, 2017, 39, 565-586.	1.0	17
39	Additive manufacturing with polypropylene microfibers. Materials Science and Engineering C, 2017, 77, 883-887.	3.8	71
40	Plasma Polymer and Biomolecule Modification of 3D Scaffolds for Tissue Engineering. Plasma Processes and Polymers, 2016, 13, 678-689.	1.6	20
41	Multireactive Poly(2-oxazoline) Nanofibers through Electrospinning with Crosslinking on the Fly. ACS Macro Letters, 2016, 5, 676-681.	2.3	41
42	Unexpected Switching of the Photogelation Chemistry When Cross-Linking Poly(2-oxazoline) Copolymers. Macromolecules, 2016, 49, 4774-4783.	2.2	34
43	Hierarchically Structured Porous Poly(2â€oxazoline) Hydrogels. Macromolecular Rapid Communications, 2016, 37, 93-99.	2.0	33
44	Growth Factor-Loaded Microparticles for Tissue Engineering: The Discrepancies of In Vitro Characterization Assays. Tissue Engineering - Part C: Methods, 2016, 22, 142-154.	1,1	8
45	Initial design and physical characterization of a polymeric device for osmosisâ€driven delayed burst delivery of vaccines. Biotechnology and Bioengineering, 2015, 112, 1927-1935.	1.7	8
46	Peptide-functionalized polymeric nanoparticles for active targeting of damaged tissue in animals with experimental autoimmune encephalomyelitis. Neuroscience Letters, 2015, 602, 126-132.	1.0	21
47	Poly(2-oxazoline) hydrogels as next generation three-dimensional cell supports. Cell Adhesion and Migration, 2014, 8, 88-93.	1.1	27
48	Composites for Delivery of Therapeutics: Combining Melt Electrospun Scaffolds with Loaded Electrosprayed Microparticles. Macromolecular Bioscience, 2014, 14, 202-214.	2.1	27
49	Colloidal drug probe: Method development and validation for adhesion force measurement using Atomic Force Microscopy. Advanced Powder Technology, 2014, 25, 1240-1248.	2.0	11
50	Controlling microencapsulation and release of micronized proteins using poly(ethylene glycol) and electrospraying. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 366-377.	2.0	39
51	Poly(2-oxazoline) Hydrogels for Controlled Fibroblast Attachment. Biomacromolecules, 2013, 14, 2724-2732.	2.6	86
52	Modified alumina nanofiber membranes for protein separation. Separation and Purification Technology, 2013, 120, 239-244.	3.9	49
53	Electrospinning and additive manufacturing: converging technologies. Biomaterials Science, 2013, 1, 171-185.	2.6	207
54	Physico-chemical/biological properties of tripolyphosphate cross-linked chitosan based nanofibers. Materials Science and Engineering C, 2013, 33, 1446-1454.	3.8	46

#	Article	IF	CITATIONS
55	Dermal fibroblast infiltration of poly($\hat{l}\mu$ -caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication, 2013, 5, 025001.	3.7	172
56	Chitosan–collagen scaffolds with nano/microfibrous architecture for skin tissue engineering. Journal of Biomedical Materials Research - Part A, 2013, 101, 3482-3492.	2.1	88
57	Sensors and imaging for wound healing: A review. Biosensors and Bioelectronics, 2013, 41, 30-42.	5. 3	352
58	Matrix Metalloproteinase Biosensor Based on a Porous Silicon Reflector. Australian Journal of Chemistry, 2013, 66, 1428.	0.5	13
59	Studies on the Effect of the Size of Polycaprolactone Microspheres for the Dispersion of Salbutamol Sulfate from Dry Powder Inhaler Formulations. Pharmaceutical Research, 2012, 29, 2445-2455.	1.7	19
60	Electrospraying of polymers with therapeutic molecules: State of the art. Progress in Polymer Science, 2012, 37, 1510-1551.	11.8	363
61	Poly(2â€oxazoline) Hydrogel Monoliths via Thiolâ€ene Coupling. Macromolecular Rapid Communications, 2012, 33, 1695-1700.	2.0	75
62	Scaffolds for Growth Factor Delivery as Applied to Bone Tissue Engineering. International Journal of Polymer Science, 2012, 2012, 1-25.	1.2	73
63	An investigation into the effect of amphiphilic siloxane oligomers on dermal fibroblasts. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1919-1927.	2.1	7
64	Polycaprolactone Microspheres as Carriers for Dry Powder Inhalers: Effect of Surface Coating on Aerosolization of Salbutamol Sulfate. Journal of Pharmaceutical Sciences, 2012, 101, 733-745.	1.6	13
65	Design, fabrication and characterization of PCL electrospun scaffoldsâ€"a review. Journal of Materials Chemistry, 2011, 21, 9419.	6.7	499
66	Amphiphilic Silicone Architectures via Anaerobic Thiol–Ene Chemistry. Organic Letters, 2011, 13, 6006-6009.	2.4	35
67	A peptidomimetic inhibitor of matrix metalloproteinases containing a tetherable linker group. Journal of Biomedical Materials Research - Part A, 2011, 96A, 663-672.	2.1	13
68	Electrospraying, a Reproducible Method for Production of Polymeric Microspheres for Biomedical Applications. Polymers, 2011, 3, 131-149.	2.0	262
69	The effect of amphiphilic siloxane oligomers on fibroblast and keratinocyte proliferation and apoptosis. Journal of Biomedical Materials Research - Part A, 2010, 95A, 620-631.	2.1	6
70	Recent advances in dermal wound healing: biomedical device approaches. Expert Review of Medical Devices, 2010, 7, 143-154.	1.4	70
71	Degradation of Piezoelectric Fluoropolymers in Space Environments. ACS Symposium Series, 2009, , 100-112.	0.5	0
72	Attenuation of protease activity in chronic wound fluid with bisphosphonate-functionalised hydrogels. Biomaterials, 2008, 29, 1785-1795.	5.7	45

#	Article	IF	CITATIONS
73	Evaluation of piezoelectric PVDF polymers for use in space environments. III. Comparison of the effects of vacuum UV and gamma radiation. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 3253-3264.	2.4	16
74	Evaluation of piezoelectric poly(vinylidene fluoride) polymers for use in space environments. I. Temperature limitations. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 1310-1320.	2.4	53
75	Evaluation of piezoelectric PVDF polymers for use in space environments. II. Effects of atomic oxygen and vacuum UV exposure. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2503-2513.	2.4	16
76	Selection and Optimization of Piezoelectric Polyvinylidene Fluoride Polymers for Adaptive Optics in Space Environments. High Performance Polymers, 2005, 17, 575-592.	0.8	11
77	An Investigation of the Nitroxide-Mediated Preirradiation Grafting of Styrene onto PFA. Macromolecules, 2004, 37, 360-366.	2.2	7
78	High energy radiation grafting of fluoropolymers. Progress in Polymer Science, 2003, 28, 1355-1376.	11.8	330
79	Investigation of the Vapor-Phase Grafting of Styrene onto PFA. Macromolecules, 2003, 36, 8276-8281.	2.2	6
80	Cross-Linking of PFA by Electron Beam Irradiation. Macromolecules, 2003, 36, 7138-7142.	2.2	21
81	An Investigation of the Thermal and Tensile Properties of PFA Following \hat{I}^3 -Radiolysis. Macromolecules, 2003, 36, 7132-7137.	2.2	19
82	High-Speed MAS 19F NMR Analysis of an Irradiated Fluoropolymer. Macromolecules, 2002, 35, 5544-5549.	2.2	34
83	The Adsorption of Multinuclear Phenolic Compounds on Activated Carbon. Journal of Colloid and Interface Science, 1996, 182, 17-25.	5.0	35
84	The Absolute Stereochemistry of Variabilin and Related Sesterterpene Tetronic Acids. Natural Product Research, 1994, 4, 51-56.	0.4	18