Maksim I Sulatsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9414741/publications.pdf

Version: 2024-02-01

933447 888059 31 322 10 17 citations g-index h-index papers 32 32 32 454 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	ÂÂOmpF porins of <i>Enterobacteriaceae</i> possess amyloidogenic properties. FASEB Journal, 2022, 36, .	0.5	O
2	New Evidence on a Distinction between $A\hat{l}^2$ 40 and $A\hat{l}^2$ 42 Amyloids: Thioflavin T Binding Modes, Clustering Tendency, Degradation Resistance, and Cross-Seeding. International Journal of Molecular Sciences, 2022, 23, 5513.	4.1	7
3	Structural Polymorphism of Lysozyme Amyloid Fibrils. Cell and Tissue Biology, 2022, 16, 259-267.	0.4	1
4	sfGFP throws light on the early stages of \hat{l}^2 -barrel amyloidogenesis. International Journal of Biological Macromolecules, 2022, 215, 224-234.	7.5	5
5	Trypsin Induced Degradation of Amyloid Fibrils. International Journal of Molecular Sciences, 2021, 22, 4828.	4.1	14
6	\hat{l}^2 -Barrels and Amyloids: Structural Transitions, Biological Functions, and Pathogenesis. International Journal of Molecular Sciences, 2021, 22, 11316.	4.1	11
7	New findings on GFP-like protein application as fluorescent tags: Fibrillogenesis, oligomerization, and amorphous aggregation. International Journal of Biological Macromolecules, 2021, 192, 1304-1310.	7.5	13
8	Accumulation of storage proteins in plant seeds is mediated by amyloid formation. PLoS Biology, 2020, 18, e3000564.	5.6	53
9	Alpha-B-Crystallin Effect on Mature Amyloid Fibrils: Different Degradation Mechanisms and Changes in Cytotoxicity. International Journal of Molecular Sciences, 2020, 21, 7659.	4.1	7
10	Point mutations affecting yeast prion propagation change the structure of its amyloid fibrils. Journal of Molecular Liquids, 2020, 314, 113618.	4.9	4
11	Denaturing Effect of Guanidine Hydrohloride on Amyloid Fibrils. Biophysical Journal, 2020, 118, 509a.	0.5	0
12	Denaturant effect on amyloid fibrils: Declasterization, depolymerization, denaturation and reassembly. International Journal of Biological Macromolecules, 2020, 150, 681-694.	7.5	15
13	Effect of the fluorescent probes ThT and ANS on the mature amyloid fibrils. Prion, 2020, 14, 67-75.	1.8	46
14	Accumulation of storage proteins in plant seeds is mediated by amyloid formation., 2020, 18, e3000564.		0
15	Accumulation of storage proteins in plant seeds is mediated by amyloid formation. , 2020, 18, e3000564.		O
16	Accumulation of storage proteins in plant seeds is mediated by amyloid formation., 2020, 18, e3000564.		0
17	Accumulation of storage proteins in plant seeds is mediated by amyloid formation., 2020, 18, e3000564.		O
18	Accumulation of storage proteins in plant seeds is mediated by amyloid formation., 2020, 18, e3000564.		0

#	Article	IF	Citations
19	Accumulation of storage proteins in plant seeds is mediated by amyloid formation., 2020, 18, e3000564.		O
20	Two Novel Amyloid Proteins, RopA and RopB, from the Root Nodule Bacterium Rhizobium leguminosarum. Biomolecules, 2019, 9, 694.	4.0	23
21	Structural Analogue of Thioflavin T, DMASEBT, as a Tool for Amyloid Fibrils Study. Analytical Chemistry, 2019, 91, 3131-3140.	6.5	16
22	The Effect of Solution pH on the Structure and Stability of Lysozyme Amyloid Fibrils. Biophysical Journal, 2019, 116, 196a.	0.5	0
23	Thioflavin T Interaction with Acetylcholinesterase: New Evidence of 1:1 Binding Stoichiometry Obtained with Samples Prepared by Equilibrium Microdialysis. ACS Chemical Neuroscience, 2018, 9, 1793-1801.	3.5	7
24	Structural Features of Amyloid Fibrils Formed from the Full-Length and Truncated Forms of Beta-2-Microglobulin Probed by Fluorescent Dye Thioflavin T. International Journal of Molecular Sciences, 2018, 19, 2762.	4.1	17
25	Trans-2-[4-(dimethylamino)styryl]-3-ethyl-1,3-benzothiazolium perchlorate - New fluorescent dye for testing of amyloid fibrils and study of their structure. Dyes and Pigments, 2018, 157, 385-395.	3.7	14
26	Investigation of \hat{l}_{\pm} -Synuclein Amyloid Fibrils Using the Fluorescent Probe Thioflavin T. International Journal of Molecular Sciences, 2018, 19, 2486.	4.1	36
27	M60-like metalloprotease domain of the Escherichia coli YghJ protein forms amyloid fibrils. PLoS ONE, 2018, 13, e0191317.	2.5	11
28	Photophysical Properties of Fluorescent Probe Thioflavin T in Crowded Milieu. Journal of Spectroscopy, 2017, 2017, 1-10.	1.3	13
29	Impact of terahertz radiation on the epithelialization rate of scarified cornea. Proceedings of SPIE, 2015, , .	0.8	5
30	Stimulation of neurite growth under broadband pulsed THz radiation. Physics of Wave Phenomena, 2014, 22, 197-201.	1.1	4
31	Terahertz spectral characteristics and optical properties of normal and pathological skin, cornea and their components. , 2014, , .		0