Yaofeng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9414544/publications.pdf Version: 2024-02-01

YAOFENC CHEN

#	Article	IF	CITATIONS
1	Halogen-Substituted 2,6-Bis(imino)pyridyl Iron and Cobalt Complexes:  Highly Active Catalysts for Polymerization and Oligomerization of Ethylene. Organometallics, 2003, 22, 4312-4321.	1.1	155
2	Fluoro-Substituted 2,6-Bis(imino)pyridyl Iron and Cobalt Complexes:  High-Activity Ethylene Oligomerization Catalysts. Organometallics, 2003, 22, 1231-1236.	1.1	153
3	A scandium terminal imido complex: synthesis, structure and DFT studies. Chemical Communications, 2010, 46, 4469.	2.2	143
4	Scandium terminal imido complex induced C–H bond selenation and formation of an Sc–Se bond. Chemical Communications, 2011, 47, 743-745.	2.2	103
5	Reactivity of a Scandium Terminal Imido Complex Towards Unsaturated Substrates. Angewandte Chemie - International Edition, 2011, 50, 7677-7680.	7.2	92
6	Versatile Reactivity of a Four-Coordinate Scandium Phosphinidene Complex: Reduction, Addition, and CO Activation Reactions. Journal of the American Chemical Society, 2013, 135, 14784-14796.	6.6	77
7	Dialkyllanthanide Complexes Containing New Tridentate Monoanionic Ligands with Nitrogen Donors. Organometallics, 2008, 27, 758-763.	1.1	72
8	An unprecedented lanthanide phosphinidene halide: synthesis, structure and reactivity. Chemical Communications, 2008, , 5547.	2.2	59
9	Lewis Acid Triggered Reactivity of a Lewis Base Stabilized Scandium-Terminal Imido Complex: C–H Bond Activation, Cycloaddition, and Dehydrofluorination. Journal of the American Chemical Society, 2014, 136, 10894-10897.	6.6	58
10	Divalent Ytterbium Boratabenzene Complex (C ₅ H ₅ BNPh ₂) ₂ Yb(THF) ₂ : Synthesis, Structure, and Solvent-Mediated Redox Transformation. Organometallics, 2008, 27, 4013-4016.	1.1	54
11	Highly Reactive Scandium Phosphinoalkylidene Complex: C–H and H–H Bonds Activation. Journal of the American Chemical Society, 2017, 139, 1081-1084.	6.6	51
12	Side Arm Twist on Zn-Catalyzed Hydrosilylative Reduction of CO ₂ to Formate and Methanol Equivalents with High Selectivity and Activity. ACS Catalysis, 2018, 8, 4710-4718.	5.5	51
13	Scandium Terminal Imido Chemistry. Accounts of Chemical Research, 2018, 51, 557-566.	7.6	51
14	An ansaâ€Heteroborabenzene Divalent Lanthanide Amide through CH Bond Cleavage. Angewandte Chemie - International Edition, 2008, 47, 9944-9947.	7.2	50
15	A Scandium Complex Bearing Both Methylidene and Phosphinidene Ligands: Synthesis, Structure, and Reactivity. Organometallics, 2015, 34, 470-476.	1.1	50
16	Multi-center nature of ethylene polymerization catalysts based on 2,6-bis(imino)pyridyl complexes of iron and cobalt. Journal of Polymer Science Part A, 2006, 44, 6159-6170.	2.5	49
17	Neodymium(iii) phosphinidene complexes supported by pentamethylcyclopentadienyl and hydrotris(pyrazolyl)borate ligands. Dalton Transactions, 2010, 39, 6886.	1.6	49
18	Wellâ€Defined Soluble P ^{3â^'} â€Containing Rareâ€Earthâ€Metal Compounds. Angewandte Chemie - International Edition, 2011, 50, 11227-11229.	7.2	49

YAOFENG CHEN

#	Article	IF	CITATIONS
19	Divalent Ytterbium Complex-Catalyzed Homo- and Cross-Coupling of Primary Arylsilanes. Journal of the American Chemical Society, 2019, 141, 138-142.	6.6	47
20	Reversible Addition of the Si–H Bond of Phenylsilane to the Scâ•N Bond of a Scandium Terminal Imido Complex. Organometallics, 2013, 32, 1137-1140.	1.1	45
21	Reactivity of scandium terminal imido complexes towards metal halides. Chemical Communications, 2012, 48, 3403.	2.2	42
22	Nonchelated Phosphoniomethylidene Complexes of Scandium and Lutetium. Journal of the American Chemical Society, 2017, 139, 17759-17762.	6.6	42
23	Boratabenzene Derivatives of Divalent Samarium: Syntheses, Structures and Catalytic Reactivities of (C5H5BXPh2)2Sm(THF)2 (X = N, P). Organometallics, 2007, 26, 6519-6521.	1.1	40
24	Yttrium Anilido Hydride: Synthesis, Structure, and Reactivity. Organometallics, 2011, 30, 5433-5441.	1.1	38
25	Rapid Entry to Functionalized Boratabenzene Complexes through Metal-Induced Hydroboration at the Anionic 1-H-Boratabenzene Ligand. Organometallics, 2011, 30, 4330-4341.	1.1	37
26	Rare-earth metal complexes of β-diketiminato ligands bearing pendant nitrogen or oxygen donors. Coordination Chemistry Reviews, 2017, 346, 77-90.	9.5	37
27	Chameleon Behavior of a Newly Synthesized Scandium Nitrilimine Derivative. Journal of the American Chemical Society, 2013, 135, 8165-8168.	6.6	36
28	Nonâ€Pincerâ€Type Mononuclear Scandium Alkylidene Complexes: Synthesis, Bonding, and Reactivity. Chemistry - A European Journal, 2016, 22, 1258-1261.	1.7	36
29	An Yttrium Hydride–Silane Complex as a Structural Model for a Ïfâ€Bond Metathesis Transition State. Angewandte Chemie - International Edition, 2013, 52, 4243-4246.	7.2	34
30	Reactions of Boratabenzene Yttrium Complexes with KN(SiMe ₃) ₂ : Salt Elimination and π-Ligand Displacement. Organometallics, 2008, 27, 6307-6312.	1.1	30
31	Synthesis and Structural Features of Boratabenzene Rare-Earth Metal Alkyl Complexes. Organometallics, 2010, 29, 3722-3728.	1.1	29
32	1-Methyl Boratabenzene Yttrium Alkyl: A Highly Active Catalyst for Dehydrocoupling of Me ₂ NH·BH ₃ . ACS Catalysis, 2013, 3, 521-524.	5.5	29
33	Versatile Reactivities of <i>ansa</i> -Heteroborabenzene Divalent Ytterbium Amide toward Alkali-Metal Salts and the Generation of Heterometallic Ytterbiumâ^'Alkali-Metal Boratabenzene Complexes. Organometallics, 2011, 30, 2012-2017.	1.1	25
34	Synthesis and Catalytic Activity of Amido-Boratabenzene Complexes of Rare-Earth Metals and Zirconium and Chromium. Organometallics, 2013, 32, 6166-6169.	1.1	22
35	Formation and Reactivity of a Câ€Pâ€Nâ€Sc Fourâ€Membered Ring: H ₂ , O ₂ , CO, Phenylsilane, and Pinacolborane Activation. Chemistry - A European Journal, 2017, 23, 5424-5428. ————————————————————————————————————	1.7	22
36	C–P or C–H Bond Cleavage of Phosphine Oxides Mediated by an Yttrium Hydride. Organometallics, 2012, 31, 4574-4578.	1.1	21

YAOFENG CHEN

#	Article	IF	CITATIONS
37	Boratatrozircenes: cycloheptatrienyl zirconium boratabenzene sandwich complexes – evaluation of potential η6–η5 hapticity interconversions. New Journal of Chemistry, 2012, 36, 1392.	1.4	21
38	Boratabenzene rare-earth metal complexes. Coordination Chemistry Reviews, 2016, 314, 2-13.	9.5	21
39	Organocalcium Complex-Catalyzed Selective Redistribution of ArSiH3 or Ar(alkyl)SiH2 to Ar3SiH or Ar2(alkyl)SiH. ACS Catalysis, 2021, 11, 6348-6356.	5.5	21
40	Synthesis, structural characterization and catalytic behavior of one-atom bridged fluorenyl cyclopentadienyl lanthanocene complexes with C s - or C 1 -symmetry. Journal of Organometallic Chemistry, 2002, 647, 114-122.	0.8	20
41	Monomeric Rareâ€Earth Metal Silylâ€Thiophosphinoylâ€Alkylidene Complexes: Synthesis, Structure, and Reactivity. Chemistry - A European Journal, 2018, 24, 13903-13917.	1.7	20
42	Synthesis and Reactivity of a Scandium Terminal Hydride: H ₂ Activation by a Scandium Terminal Imido Complex. Chemistry - A European Journal, 2017, 23, 14728-14732.	1.7	20
43	Rare-earth metal hydrides supported by silicon-bridged boratabenzene fluorenyl ligands: synthesis, structure and reactivity. Dalton Transactions, 2017, 46, 1218-1227.	1.6	19
44	One frontier of the rare-earth organometallic chemistry: The chemistry of rare-earth metal alkylidene, imido and phosphinidene complexes. Scientia Sinica Chimica, 2011, 41, 304-313.	0.2	19
45	Synthesis, and structural characterization of solvent-free divalent ytterbium bis(boratabenzene) and (cyclopentadienyl)(boratabenzene) complexes. Journal of Organometallic Chemistry, 2010, 695, 2713-2719.	0.8	18
46	Mono(boratabenzene) rare-earth metal dialkyl complexes: synthesis, structure and catalytic behaviors for styrene polymerization. Dalton Transactions, 2015, 44, 5771-5776.	1.6	18
47	Synthesis and versatile reactivity of scandium phosphinophosphinidene complexes. Nature Communications, 2020, 11, 2916.	5.8	18
48	Assembling High-Temperature Single-Molecule Magnets with Low-Coordinate Bis(amido) Dysprosium Unit [DyN 2] + via Cl–K–Cl Linkage. CCS Chemistry, 2020, 2, 362-368.	4.6	18
49	Scandium-Terminal Boronylphosphinidene Complex. Journal of the American Chemical Society, 2021, 143, 2705-2709.	6.6	17
50	Reactivity of Scandium Terminal Imido Complex toward Boranes: C(sp ³)–H Bond Borylation and B–O Bond Cleavage. Organometallics, 2017, 36, 4620-4625.	1.1	16
51	Rare-earth/zinc heterometallic complexes containing both alkoxy-amino-bis(phenolato) and chiral salen ligands: synthesis and catalytic application for copolymerization of CO ₂ with cyclohexene oxide. Dalton Transactions, 2019, 48, 10565-10573.	1.6	16
52	Synthesis and Structure of Silicon-Bridged Boratabenzene Fluorenyl Rare-Earth Metal Complexes. Organometallics, 2016, 35, 1995-2002.	1.1	15
53	Samarium(II) Monoalkyl Complex Supported by a βâ€Diketiminatoâ€Based Tetradentate Ligand: Synthesis, Structure, and Catalytic Hydrosilylation of Internal Alkynes. Chemistry - A European Journal, 2020, 26, 5494-5499.	1.7	15
54	Insertion of Metalâ€Substituted Silylene into Naphthalene's Aromatic Ring and Subsequent Rearrangement for Silaspiroâ€Benzocycloheptenyl and Cyclobutenosilaindan Derivatives. Angewandte Chemie - International Edition, 2021, 60, 3189-3195.	7.2	15

YAOFENG CHEN

#	Article	IF	CITATIONS
55	Are Sc—C and Sc—P Bonds Reactive in Scandium Phosphinoalkylidene Complex? Insights on a Versatile Reactivity. Chinese Journal of Chemistry, 2018, 36, 904-908.	2.6	14
56	Boronâ€Oxygen Bond Cleavage of Pinacolborane and Catecholborane Mediated by a Scandium Phosphinidene Complex. Chinese Journal of Chemistry, 2014, 32, 752-756.	2.6	13
57	Substitution reaction of triphenylphosphine oxide with rare-earth metal phosphido methyl complexes. New Journal of Chemistry, 2015, 39, 7582-7588.	1.4	13
58	Dianionic Carbonâ€Bridged Scandium–Copper/Silver Heterobimetallic Complexes: Synthesis, Bonding, and Reactivity. Chemistry - A European Journal, 2018, 24, 5637-5643.	1.7	13
59	Tris(boratabenzene) Lanthanum Complexes: Synthesis, Structure, and Reactivity. Organometallics, 2015, 34, 3216-3221.	1.1	11
60	Rare-Earth-Catalyzed Selective Synthesis of Linear Hydridopolycarbosilanes and Their Functionalization. Macromolecules, 2021, 54, 673-678.	2.2	10
61	Scandium terminal imido complex induced intramolecular C-N bond cleavage and transformation. Science China Chemistry, 2014, 57, 1098-1105.	4.2	9
62	Scandium Phosphonioketene: Synthesis, Bonding and Reactivity. Chemistry - A European Journal, 2019, 25, 10304-10308.	1.7	9
63	α-C–C agostic interactions and C–H bond activation in scandium cyclopropyl complexes. Inorganic Chemistry Frontiers, 2020, 7, 4822-4831.	3.0	9
64	Zinc Powder Catalysed Formylation and Urealation of Amines Using <scp>CO₂</scp> as a <scp>C1</scp> Building Block ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1057-1064.	2.6	9
65	Divalent Ytterbium Iodide Supported by βâ€Điketiminato Based Tridentate Ligand: Synthesis, Structure and Small Molecule Activation â€. Chinese Journal of Chemistry, 2020, 38, 247-253.	2.6	8
66	Organocalcium Complex atalyzed Dehydrogenative Coupling of Hydrosilanes with Terminal Alkynes. European Journal of Organic Chemistry, 2022, 2022, .	1.2	7
67	Divalent Ytterbium Hydrido Complex Supported by a β-Diketiminato-Based Tetradentate Ligand: Synthesis, Structure, and Reactivity. Inorganic Chemistry, 2021, 60, 13913-13919.	1.9	6
68	Hydrogenation of Alkenes Catalyzed by Rare-Earth Metal Phosphinophosphinidene Complexes: 1,2-Addition/Elimination Versus If-Bond Metathesis Mechanism. CCS Chemistry, 2022, 4, 3309-3318.	4.6	6
69	Neutral and Anionic Monomeric Zirconium Imides Prepared via Selective C=N Bond Cleavage of a Multidentate and Sterically Demanding βâ€Diketiminato Ligand. Chemistry - an Asian Journal, 2019, 14, 2629-2638.	1.7	5
70	Insertion of Metalâ€Substituted Silylene into Naphthalene's Aromatic Ring and Subsequent Rearrangement for Silaspiroâ€Benzocycloheptenyl and Cyclobutenosilaindan Derivatives. Angewandte Chemie, 2021, 133, 3226-3232.	1.6	4
71	Synthesis, Characterization and Reactivity of a Hydrido―and Imidoâ€Bridged Dinuclear Ytterbium(III) Complex. Angewandte Chemie - International Edition, 2022, , e202200540.	7.2	1

72 Coordination Chemistry of Lanthanides. , 2022, , 119-148.

5

#	Article	IF	CITATIONS
73	Synthesis, Characterization and Reactivity of a Hydrido―and Imidoâ€Bridged Dinuclear Ytterbium(III) Complex. Angewandte Chemie, 0, , .	1.6	0