
David A Hafler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9414368/publications.pdf Version: 2024-02-01

Πλυίο Δ Ηλείερ

#	Article	IF	CITATIONS
1	Phase 2 Trial of Rituximab in Acetylcholine Receptor Antibody-Positive Generalized Myasthenia Gravis. Neurology, 2022, 98, .	1.1	51
2	Single-cell multi-omics reveals dyssynchrony of the innate and adaptive immune system in progressive COVID-19. Nature Communications, 2022, 13, 440.	12.8	100
3	TCR-sequencing in cancer and autoimmunity: barcodes and beyond. Trends in Immunology, 2022, 43, 180-194.	6.8	20
4	Type I interferon transcriptional network regulates expression of coinhibitory receptors in human T cells. Nature Immunology, 2022, 23, 632-642.	14.5	54
5	Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain. Nature Neuroscience, 2022, 25, 306-316.	14.8	166
6	Population genetics meets single-cell sequencing. Science, 2022, 376, 134-135.	12.6	5
7	Basic principles of neuroimmunology. Seminars in Immunopathology, 2022, 44, 685-695.	6.1	10
8	Circulating clonally expanded T cells reflect functions of tumor-infiltrating T cells. Journal of Experimental Medicine, 2021, 218, .	8.5	48
9	Clinical Significance of PDCD4 in Melanoma by Subcellular Expression and in Tumor-Associated Immune Cells. Cancers, 2021, 13, 1049.	3.7	9
10	Immune dysregulation and autoreactivity correlate with disease severity in SARS-CoV-2-associated multisystem inflammatory syndrome in children. Immunity, 2021, 54, 1083-1095.e7.	14.3	164
11	A phase 1b study of nivolumab in patients with autoimmune disorders and advanced malignancies (AIM-NIVO) Journal of Clinical Oncology, 2021, 39, TPS2676-TPS2676.	1.6	4
12	Cutting Edge: Distinct B Cell Repertoires Characterize Patients with Mild and Severe COVID-19. Journal of Immunology, 2021, 206, 2785-2790.	0.8	31
13	NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data. Communications Biology, 2021, 4, 629.	4.4	50
14	23Na imaging: Worth its salt for understanding multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2110799118.	7.1	0
15	Oleic acid restores suppressive defects in tissue-resident FOXP3 Tregs from patients with multiple sclerosis. Journal of Clinical Investigation, 2021, 131, .	8.2	56
16	The double-edged sword: Harnessing PD-1 blockade in tumor and autoimmunity. Science Immunology, 2021, 6, eabf4034.	11.9	22
17	CXCR3+ T cells in multiple sclerosis correlate with reduced diversity of the gut microbiome. Journal of Translational Autoimmunity, 2020, 3, 100032.	4.0	32
18	Epigenetic fine-mapping: identification of causal mechanisms for autoimmunity. Current Opinion in Immunology, 2020, 67, 50-56.	5.5	1

#	Article	IF	CITATIONS
19	Transcriptomic and clonal characterization of T cells in the human central nervous system. Science Immunology, 2020, 5, .	11.9	73
20	Differential expression of the T-cell inhibitor TIGIT in glioblastoma and MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	22
21	A phase Ib study of nivolumab in patients with autoimmune disorders and advanced malignancies (AIM-NIVO) Journal of Clinical Oncology, 2020, 38, TPS3158-TPS3158.	1.6	2
22	Fingolimod modulates T cell phenotype and regulatory T cell plasticity in vivo. Journal of Autoimmunity, 2019, 96, 40-49.	6.5	39
23	Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science, 2019, 365, .	12.6	710
24	Autoantibodies against Neurologic Antigens in Nonneurologic Autoimmunity. Journal of Immunology, 2019, 202, 2210-2219.	0.8	22
25	Aedes aegypti AgBR1 antibodies modulate early Zika virus infection of mice. Nature Microbiology, 2019, 4, 948-955.	13.3	43
26	Latent autoimmunity across disease-specific boundaries in at-risk first-degree relatives of SLE and RA patients. EBioMedicine, 2019, 42, 76-85.	6.1	18
27	From Big Data to Precision Medicine. Frontiers in Medicine, 2019, 6, 34.	2.6	273
28	TIGIT signaling restores suppressor function of Th1 Tregs. JCI Insight, 2019, 4, .	5.0	82
29	Regulatory T Cells: From Discovery to Autoimmunity. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a029041.	6.2	49
30	Single-cell RNA sequencing reveals microglia-like cells in cerebrospinal fluid during virologically suppressed HIV. JCI Insight, 2018, 3, .	5.0	85
31	Enhanced astrocyte responses are driven by a genetic risk allele associated with multiple sclerosis. Nature Communications, 2018, 9, 5337.	12.8	54
32	Activated β-catenin in Foxp3+ regulatory T cells links inflammatory environments to autoimmunity. Nature Immunology, 2018, 19, 1391-1402.	14.5	90
33	Multiple sclerosis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 148, 723-730.	1.8	50
34	Regulatory T cells in autoimmune disease. Nature Immunology, 2018, 19, 665-673.	14.5	488
35	Coâ€inhibitory blockade while preserving tolerance: checkpoint inhibitors for glioblastoma. Immunological Reviews, 2017, 276, 9-25.	6.0	13
36	Solving Immunology?. Trends in Immunology, 2017, 38, 116-127.	6.8	45

#	Article	IF	CITATIONS
37	Functional differences between PD-1+ and PD-1- CD4+ effector T cells in healthy donors and patients with glioblastoma multiforme. PLoS ONE, 2017, 12, e0181538.	2.5	34
38	Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization. Frontiers in Immunology, 2017, 8, 1844.	4.8	43
39	Podoplanin is a negative regulator of Th17 inflammation. JCI Insight, 2017, 2, .	5.0	29
40	PD-1 marks dysfunctional regulatory T cells in malignant gliomas. JCI Insight, 2016, 1, .	5.0	182
41	<scp>AKT</scp> isoforms modulate Th1â€ike Treg generation and function in human autoimmune disease. EMBO Reports, 2016, 17, 1169-1183.	4.5	88
42	Evaluation of KIR4.1 as an Immune Target in Multiple Sclerosis. New England Journal of Medicine, 2016, 374, 1495-1496.	27.0	17
43	Production of Proinflammatory Cytokines by Monocytes in Liver-Transplanted Recipients with De Novo Autoimmune Hepatitis Is Enhanced and Induces TH1-like Regulatory T Cells. Journal of Immunology, 2016, 196, 4040-4051.	0.8	51
44	The Human Functional Genomics Project: Understanding Generation of Diversity. Cell, 2016, 167, 894-896.	28.9	16
45	National Heart, Lung, and Blood Institute Working Group Report on Salt in Human Health and Sickness. Hypertension, 2016, 68, 281-288.	2.7	48
46	Linking Genotype to Clinical Phenotype in Multiple Sclerosis. JAMA Neurology, 2016, 73, 777.	9.0	4
47	Power estimation for non-standardized multisite studies. NeuroImage, 2016, 134, 281-294.	4.2	36
48	CNS demyelination and enhanced myelin-reactive responses after ipilimumab treatment. Neurology, 2016, 86, 1553-1556.	1.1	65
49	Editorial: T Cell Regulation by the Environment. Frontiers in Immunology, 2015, 6, 229.	4.8	1
50	Investigating the Antigen Specificity of Multiple Sclerosis Central Nervous System-Derived Immunoglobulins. Frontiers in Immunology, 2015, 6, 600.	4.8	37
51	Thymic Selection: To Thine Own Self Be True. Immunity, 2015, 42, 788-789.	14.3	1
52	Genetic variants associated with autoimmunity drive NFκB signaling and responses to inflammatory stimuli. Science Translational Medicine, 2015, 7, 291ra93.	12.4	81
53	Systems Immunology Reveals Markers of Susceptibility to West Nile Virus Infection. Vaccine Journal, 2015, 22, 6-16.	3.1	35
54	Multiple sclerosis—a quiet revolution. Nature Reviews Neurology, 2015, 11, 134-142.	10.1	286

#	Article	IF	CITATIONS
55	Biomarkers in multiple sclerosis. Clinical Immunology, 2015, 161, 51-58.	3.2	139
56	Functional inflammatory profiles distinguish myelin-reactive T cells from patients with multiple sclerosis. Science Translational Medicine, 2015, 7, 287ra74.	12.4	246
57	Sodium-activated macrophages: the salt mine expands. Cell Research, 2015, 25, 885-886.	12.0	6
58	Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nature Reviews Neurology, 2015, 11, 504-514.	10.1	307
59	Monoallelic expression of the human <i>FOXP2</i> speech gene. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6848-6854.	7.1	36
60	TLR7 induces anergy in human CD4+ T cells. Nature Immunology, 2015, 16, 118-128.	14.5	94
61	Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature, 2015, 518, 337-343.	27.8	1,669
62	Preliminary safety and activity of nivolumab and its combination with ipilimumab in recurrent glioblastoma (GBM): CHECKMATE-143 Journal of Clinical Oncology, 2015, 33, 3010-3010.	1.6	52
63	Enhanced suppressor function of TIMâ€3 ⁺ FoxP3 ⁺ regulatory TÂcells. European Journal of Immunology, 2014, 44, 2703-2711.	2.9	182
64	B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Science Translational Medicine, 2014, 6, 248ra107.	12.4	394
65	Treg Cells Expressing the Coinhibitory Molecule TIGIT Selectively Inhibit Proinflammatory Th1 and Th17 Cell Responses. Immunity, 2014, 40, 569-581.	14.3	702
66	pRESTO: a toolkit for processing high-throughput sequencing raw reads of lymphocyte receptor repertoires. Bioinformatics, 2014, 30, 1930-1932.	4.1	417
67	Small-Molecule RORÎ ³ t Antagonists Inhibit T Helper 17 Cell Transcriptional Network by Divergent Mechanisms. Immunity, 2014, 40, 477-489.	14.3	253
68	Joint Modeling and Registration of Cell Populations in Cohorts of High-Dimensional Flow Cytometric Data. PLoS ONE, 2014, 9, e100334.	2.5	41
69	Models of Somatic Hypermutation Targeting and Substitution Based on Synonymous Mutations from High-Throughput Immunoglobulin Sequencing Data. Frontiers in Immunology, 2013, 4, 358.	4.8	197
70	Identification of T helper type 1–like, Foxp3+ regulatory T cells in human autoimmune disease. Nature Medicine, 2011, 17, 673-675.	30.7	420
71	Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis. Brain, 2011, 134, 534-541.	7.6	186
72	Pervasive Sharing of Genetic Effects in Autoimmune Disease. PLoS Genetics, 2011, 7, e1002254.	3.5	540

#	Article	IF	CITATIONS
73	TIMs: central regulators of immune responses. Journal of Experimental Medicine, 2008, 205, 2699-2701.	8.5	57
74	Lack of TIM-3 Immunoregulation in Multiple Sclerosis. Journal of Immunology, 2008, 180, 4409-4414.	0.8	121
75	Polyspecificity of T cell and B cell receptor recognition. Seminars in Immunology, 2007, 19, 216-224.	5.6	194
76	Risk Alleles for Multiple Sclerosis Identified by a Genomewide Study. New England Journal of Medicine, 2007, 357, 851-862.	27.0	1,529
77	Cytokines and interventional immunology. Nature Reviews Immunology, 2007, 7, 423-423.	22.7	13
78	Applying a new generation of genetic maps to understand human inflammatory disease. Nature Reviews Immunology, 2005, 5, 83-91.	22.7	23
79	The neuroimmunology of multiple sclerosis: possible roles of T and B lymphocytes in immunopathogenesis. Journal of Clinical Immunology, 2001, 21, 81-92.	3.8	155
80	CD4+CD25high Regulatory Cells in Human Peripheral Blood. Journal of Immunology, 2001, 167, 1245-1253.	0.8	1,655
81	Extreme Th1 bias of invariant Vα24JαQ T cells in type 1 diabetes. Nature, 1998, 391, 177-181.	27.8	639
82	Immune deviation following pulse cyclophosphamide/methylprednisolone treatment of multiple sclerosis: Increased interleukin-4 production and associated eosinophilia. Annals of Neurology, 1997, 42, 313-318.	5.3	92
83	Immunologic Mechanisms and Therapy in Multiple Sclerosis. Immunological Reviews, 1995, 144, 75-107.	6.0	142
84	Common Tâ€cell receptor V β usage in oligoclonal T lymphocytes derived from cerebrospinal fluid and blood of patients with multiple sclerosis. Annals of Neurology, 1991, 29, 33-40.	5.3	68
85	Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin antigens: IV. Suppression of chronic relapsing disease in the lewis rat and strain 13 guinea pig. Annals of Neurology, 1991, 29, 615-622.	5.3	74
86	T-cell recognition of an immuno-dominant myelin basic protein epitope in multiple sclerosis. Nature, 1990, 346, 183-187.	27.8	866
87	Decrease of suppressor inducer (cd4+ 2h4+) t cells in multiple sclerosis cerebrospinal fluid. Annals of Neurology, 1989, 25, 494-499.	5.3	63
88	Loss of functional suppression is linked to decreases in circulating suppressor inducer (CD4 + 2H4 +) T Cells in multiple sclerosis. Annals of Neurology, 1988, 24, 185-191.	5.3	79
89	Immunohistochemical Analysis of Suppressor-Inducer and Helper-Inducer T Cells in Multiple Sclerosis Brain Tissue. Annals of the New York Academy of Sciences, 1988, 540, 306-308.	3.8	2
90	Cumulative Experience with High-Dose Intravenous Cyclophosphamide and ACTH Therapy in Chronic Progressive Multiple Sclerosis. Annals of the New York Academy of Sciences, 1988, 540, 535-536.	3.8	3

#	Article	IF	CITATIONS
91	In vivo labeling of blood T cells: Rapid traffic into cerebrospinal fluid in multiple sclerosis. Annals of Neurology, 1987, 22, 89-93.	5.3	90
92	In Vivo Activated T Lymphocytes in the Peripheral Blood and Cerebrospinal Fluid of Patients with Multiple Sclerosis. New England Journal of Medicine, 1985, 312, 1405-1411.	27.0	310
93	Autoimmunity following viral infection: demonstration of monoclonal antibodies against normal tissue following infection of mice with reovirus and demonstration of shared antigenicity between virus and lymphocytes. European Journal of Immunology, 1984, 14, 561-565.	2.9	43