
Nan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9414292/publications.pdf Version: 2024-02-01

NAN WANG

#	Article	IF	CITATIONS
1	Mechanically Robust Superhydrophobic Steel Surface with Anti-Icing, UV-Durability, and Corrosion Resistance Properties. ACS Applied Materials & Interfaces, 2015, 7, 6260-6272.	8.0	498
2	Superhydrophobic membranes on metal substrate and their corrosion protection in different corrosive media. Applied Surface Science, 2014, 305, 603-608.	6.1	97
3	Designing durable and flexible superhydrophobic coatings and its application in oil purification. Journal of Materials Chemistry A, 2016, 4, 4107-4116.	10.3	94
4	Design and Fabrication of the Lyophobic Slippery Surface and Its Application in Anti-Icing. Journal of Physical Chemistry C, 2016, 120, 11054-11059.	3.1	84
5	Fabrication of robust and scalable superhydrophobic surfaces and investigation of their anti-icing properties. Materials and Design, 2018, 156, 320-328.	7.0	74
6	Mechanically robust superhydrophobic coating for aeronautical composite against ice accretion and ice adhesion. Composites Part B: Engineering, 2019, 176, 107267.	12.0	67
7	Scalable superhydrophobic coating with controllable wettability and investigations of its drag reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 290-295.	4.7	62
8	Robust superhydrophobic coating and the anti-icing properties of its lubricants-infused-composite surface under condensing condition. New Journal of Chemistry, 2017, 41, 1846-1853.	2.8	57
9	Superhydrophobic surface on steel substrate and its anti-icing property in condensing conditions. Applied Surface Science, 2015, 355, 226-232.	6.1	48
10	Superhydrophobic Surface with Stepwise Multilayered Micro- and Nanostructure and an Investigation of Its Corrosion Resistance. Langmuir, 2019, 35, 15078-15085.	3.5	41
11	Surface modification of coordination polymers to enable the construction of CoP/N,P-codoped carbon nanowires towards high-performance lithium storage. Journal of Colloid and Interface Science, 2020, 565, 503-512.	9.4	39
12	Comparison of micro-/nano-hierarchical and nano-scale roughness of silica membranes in terms of wetting behavior and transparency. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 446, 8-14.	4.7	31
13	Hierarchical Fe3O4@C nanofoams derived from metal–organic frameworks for high-performance lithium storage. Rare Metals, 2020, 39, 1072-1081.	7.1	31
14	Laser textured dimple-patterns to govern the surface wettability of superhydrophobic aluminum plates. Journal of Materials Science and Technology, 2021, 89, 59-67.	10.7	30
15	Fabrication of superhydrophobic and lyophobic slippery surface on steel substrate. Applied Surface Science, 2016, 387, 1219-1224.	6.1	17
16	Robust superhydrophobic surface with wrinkle-like structures on AZ31 alloy that repels viscous oil and investigations of the anti-icing property. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 594, 124655.	4.7	17
17	Designing Long-Term Cycle Life for a Lithium–Air Battery with a Modified Gas Diffusion Layer in Terms of the Moisture Intrusion and Electrolyte Volatilization. Journal of Physical Chemistry C, 2021, 125, 24787-24795.	3.1	13
18	Lyophobic slippery surfaces on smooth/hierarchical structured substrates and investigations of their dynamic liquid repellency. Physical Chemistry Chemical Physics, 2019, 21, 15705-15711.	2.8	10

NAN WANG

#	Article	IF	CITATIONS
19	Superhydrophobic surfaces with flake-like structures and lubricant-infused composite surfaces to enhance anti-icing ability. Chemical Physics Letters, 2020, 758, 137903.	2.6	10
20	Nano-grinding derived high-performance Li1.2Ni0.13Co0.13Mn0.54O2 cathode material: from kilogram-scale synthesis to its pouch cell. Ionics, 2021, 27, 491-506.	2.4	2
21	Ultrafine molybdenum oxycarbide nanodots encapsulated in N,P co-doped carbon nanofibers as an advanced anode material for lithium-ion batteries. Nanotechnology, 2021, 32, 295601.	2.6	2